Midterm 1 Solutions for MATH 53

October 7, 2014

1. Find the area of the region enclosed by one loop of the curve $r^{2}=\sin (2 \theta)$.

Solution: We set $r=0$ to find the values of θ giving a single loop, obtaining $2 \theta=0, \pi$, so $0 \leq \theta \leq \pi / 2$ gives a single loop of the graph. Now, we plug into the equation for the area of a polar graph:

$$
\int_{0}^{\pi / 2} \frac{1}{2} r^{2} d \theta=\int_{0}^{\pi / 2} \frac{1}{2} \sin (2 \theta) d \theta=\int_{0}^{\pi / 2} \sin \theta \cos \theta d \theta
$$

Substitute $u=\sin \theta, d u=\cos \theta d \theta$ to get

$$
=\int_{0}^{1} u d u=\left[\frac{1}{2} u^{2}\right]_{0}^{1}=\frac{1}{2} .
$$

2. Decide if the triangle with vertices

$$
P(0,-3,-4), Q(1,-5,-1), R(5,-6,-3)
$$

is right-angled
(a) using angles between vectors
(b) using distances and the Pythagorean theorem.

Solution: We compute

$$
\begin{gathered}
|P-Q|^{2}=(0-1)^{2}+(-3-(-5))^{2}+(-4-(-1))^{2}=14, \\
|Q-R|^{2}=(1-5)^{2}+(-5-(-6))^{2}+(-1-(-3))^{2}=21, \\
|P-R|^{2}=(-5)^{2}+(-3-(-6))^{2}+(-4-(-3))^{2}=35 .
\end{gathered}
$$

Clearly if $P Q R$ is a right triangle, $\mathbf{P}-\mathbf{R}$ is the hypotenuse, so we compute the dot product between the vectors $\mathbf{P}-\mathbf{Q}=\langle-1,2,-3\rangle$ and $\mathbf{R}-\mathbf{Q}=\langle 4,-1,-2\rangle$. Then $(\mathbf{P}-\mathbf{Q}) \cdot(\mathbf{R}-\mathbf{Q})=(-1) 4+2(-1)-3(-2)=0$. Thus, $P Q R$ is a right triangle by 12.3.7.

We also see that $|P-R|^{2}=35=21+14=|Q-R|^{2}+|P-Q|^{2}$, so it is a right triangle by the Pythagorean theorem.
3. Find an equation for the plane that passes through the point $(-2,4,-3)$ and is perpendicular to the planes $-x+3 y-5 z=42$ and $y-2 z=-5$.
Solution: The normal vectors to the two planes are given by $\langle-1,3,-5\rangle$ and $\langle 0,1,-2\rangle$. The cross product will be perpendicular to both normal vectors, and thus will be parallel to the line of intersection of the two planes.

$$
\begin{gathered}
\langle-1,3,-5\rangle \times\langle 0,1,-2\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 3 & -5 \\
0 & 1 & -2
\end{array}\right|= \\
=(3 \cdot(-2)-(-5) \cdot 1) \mathbf{i}-(-1 \cdot(-2)-(-5) \cdot 0) \mathbf{j}+(-1 \cdot 1-3 \cdot 0) \mathbf{k}=-\mathbf{i}-2 \mathbf{j}-\mathbf{k} .
\end{gathered}
$$

We now compute the equation for the plane as:

$$
-(x-(-2))-2(y-4)-(z-(-3))=-x-2 y-z+6=0 .
$$

4. Let $\mathbf{r}(t)=\langle\sin t, 2 \cos t\rangle$.
(a) Sketch the plane curve with the given vector equation.

(b) Find $\mathbf{r}^{\prime}(t)$.

Solution:

$$
\mathbf{r}^{\prime}(t)=\langle\cos t,-2 \sin t\rangle
$$

(c) Sketch the position vector $\mathbf{r}(t)$ and the tangent vector $\mathbf{r}^{\prime}(t)$ for the value $t=\pi / 4$.

Solution: We have $\mathbf{r}(\pi / 4)=\langle\sqrt{2} / 2, \sqrt{2}\rangle$ and $\mathbf{r}^{\prime}(\pi / 4)=\langle\sqrt{2} / 2,-\sqrt{2}\rangle$. We plot the vectors at this point:

5. Find the limit, if it exists, or show that the limit does not exist.
(a)

$$
\lim _{(x, y) \rightarrow(1,0)} \frac{x y-y}{(x-1)^{2}+y^{2}} .
$$

Solution: Let $y=0$, then we get the 1 -variable limit

$$
\lim _{x \rightarrow 1} \frac{(x-1) \cdot 0}{(x-1)^{2}+0^{2}}=0
$$

Now let $x=y+1$, then

$$
\lim _{y \rightarrow 0} \frac{(y+1-1) y}{(y+1-1)^{2}+y^{2}}=\frac{1}{2} .
$$

Since we obtain two different limits, the limit does not exist (see p. 894).
(b)

$$
\lim _{(x, y) \rightarrow(1,0)} \frac{x y-y}{\sqrt{(x-1)^{2}+y^{2}}} .
$$

Solution: We have $|x-1| \leq \sqrt{(x-1)^{2}+y^{2}},|y| \leq \sqrt{(x-1)^{2}+y^{2}}$, so $\frac{|(x-1) y|}{\sqrt{(x-1)^{2}+y^{2}}} \leq$ $\sqrt{(x-1)^{2}+y^{2}}$. Thus,

$$
\lim _{(x, y) \rightarrow(1,0)} \frac{|x y-y|}{\sqrt{(x-1)^{2}+y^{2}}} \leq \lim _{(x, y) \rightarrow(1,0)} \sqrt{(x-1)^{2}+y^{2}}=0 .
$$

By the squeeze theorem, the limit exists and $=0$.
6. Use the Chain Rule to find $d w / d t$. Express your answer solely in terms of the variable t.

$$
w=\ln \sqrt{x^{2}+y^{2}+z^{2}}, \quad x=\sin t, y=\cos t, z=\tan t .
$$

Solution: We have $w=\frac{1}{2} \ln \left(x^{2}+y^{2}+z^{2}\right)$. We apply the multivariable Chain Rule:

$$
\begin{gathered}
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}=\frac{1}{2} \frac{1}{x^{2}+y^{2}+z^{2}}\left(2 x \cdot \cos t+2 y \cdot(-\sin t)+2 z \cdot \sec ^{2} t\right)= \\
\frac{1}{\sin ^{2} t+\cos ^{2} t+\tan ^{2} t}\left(\sin t \cos t-\cos t \sin t+\tan t \sec ^{2} t\right)=\frac{1}{\sec ^{2} t} \tan t \sec ^{2} t=\tan t
\end{gathered}
$$

Here, we've used the identities $\sin ^{2} t+\cos ^{2} t=1,1+\tan ^{2} t=\sec ^{2} t$, and we used the single variable chain rule to differentiate w as well as formulae for derivatives of trigonometric functions.
7. Find the equations of (a) the tangent plane and (b) the normal line to the given surface at the specified point.

$$
x^{2}+y^{2}+z^{2}=3 x y z, \quad(1,1,1)
$$

Solution: Let $F(x, y, z)=x^{2}+y^{2}+z^{2}-3 x y z$, then we are looking at the level set $F(x, y, z)=0$. This function is everywhere infinitely differentiable by the product and sum and chain rules since it is a polynomial.
We compute $\nabla F(x, y, z)=\langle 2 x-3 y z, 2 y-3 x z, 2 z-3 x y\rangle$, and evaluate $\nabla F(1,1,1)=$ $\langle-1,-1,-1\rangle$. By 14.6.19, this is the normal vector to the tangent plane $-(x-1)-$ $(y-1)-(z-1)=-x-y-z+3=0$, so we have $x+y+z=3$ is the tangent plane, answering (a).
For (b), we have the parametric equation for the line given by $\mathbf{r}(t)=\langle 1,1,1\rangle+(-t+$ 1) $\langle-1,-1,-1\rangle=\langle t, t, t\rangle$. We used the vector function formula for a line, together with the fact that we may choose the parameter however we like.
8. Find the extreme values of f on the region described by the inequality.

$$
f(x, y)=2 x^{2}+3 y^{2}-4 x-5, \quad x^{2}+y^{2} \leq 16
$$

Solution:

The region $\left\{(x, y) \mid x^{2}+y^{2} \leq 16\right\}$ is a closed and bounded region. Thus, we may apply the Extreme Value Theorem to conclude that the continuous function $f(x, y)$ achieves an absolute maximum and absolute minimum in the region.
We may therefore apply method 14.7.9. The gradient is $\nabla f(x, y)=\langle 4 x-4,6 y\rangle$ by the differentiation rules. So the critical point is at $4 x-4=0,6 y=0$, which implies $x=1, y=0$ which is in the interior of the region. We compute $f(1,0)=2-4-5=-7$. Next, we need to find the extrema of f on the boundary of the region $\left\{(x, y) \mid x^{2}+y^{2}=\right.$ $16\}$. We use the method of Lagrange multipliers. The constraint function is $g(x, y)=$ $x^{2}+y^{2}-16$, and $\nabla g=\langle 2 x, 2 y\rangle$. We set $\nabla f=\lambda \nabla g$, so $4 x-4=\lambda 2 x, 6 y=\lambda 2 y$. If $y=0$, then we see that $x= \pm 4$ from the constraint $x^{2}+0^{2}=16$. If $y \neq 0$, then we have $\lambda=3$, so $4 x-4=6 x$, and $x=-2$. Thus, $(-2)^{2}+y^{2}=16$, so $y^{2}=12$, and $y= \pm 2 \sqrt{3}$.
We compute $f(\pm 4,0)=2(\pm 4)^{2}-4(\pm 4)-5=32 \mp 16-5=11,43$ and $f(-2, \pm 2 \sqrt{3})=$ $2(-2)^{2}+3 \cdot 12-4(-2)-5=47$. Comparing values, we see that the maximum value is 47 , and the minimum value is -7 .
9. (Extra Credit 4 pts.)

If $\mathbf{r}(t)$ is a 3-dimensional vector-valued function having all derivatives existing, and

$$
\mathbf{u}(t)=\mathbf{r}(t) \cdot\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right]
$$

show that

$$
\mathbf{u}^{\prime}(t)=\mathbf{r}(t) \cdot\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime \prime}(t)\right]
$$

Solution:

We use the product rule for dot and cross products Theorem 13.2.3(4-5):

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)=\mathbf{r}^{\prime}(t) \cdot\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right]+\mathbf{r}(t) \cdot\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right]^{\prime}= \\
{\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime}(t)\right] \cdot \mathbf{r}^{\prime \prime}(t)+\mathbf{r}(t) \cdot\left[\mathbf{r}^{\prime \prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right]+\mathbf{r}(t) \cdot\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime \prime}(t)\right]=\mathbf{r}(t) \cdot\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime \prime}(t)\right] .}
\end{gathered}
$$

Here we are using 12.4.11(5) to rearrange the triple scalar product and the fact that $\mathbf{a} \times \mathbf{a}=\mathbf{0}$ for any 3-dimensional vector.

