UNIVERSITY OF CALIFORNIA, BERKELEY

MECHANICAL ENGINEERING
ME167 Microscale flow
Mean: 150/250 SD: 42 Max: 204 Min: 90
Mid-term Test, S15 Prof S. Morris
1.(70) A cup of water spilt on a plastic countertop spreads to form an irregularly shaped puddle. By balancing horizontal forces acting on the water in the control volume shown in figure (b), find the puddle depth d in terms of water density ρ, surface tension γ, contact angle θ and g. As part of your solution, draw a free-body showing the horizontal forces in play.

(a) Plan view

(b) Cross-section ab

Solution

The horizontal forces are shown in the figure. I have used the gauge pressure; otherwise, to the pressure force shown on the diagram you should add $p_{0} d$, and you also add a pressure force $p_{0} d$ acting the left on the right hand vertical face of the volume. (Those contributions cancel, of course.)
Equating the resultant horizontal force to zero, then solving for d, we obtain

$$
d=\sqrt{\frac{2 \gamma}{\rho g}(1-\cos \theta)}
$$

We note that d is of order the capillary length.
Step 1: 3 forces correctly given on the free-body diagram: $3 \times 20=(+60)$
Step 2: Dimensionally correct final result: $(+10)$.
Misc: trivial slips in sign -1 point; did not deduct for failing to note that p is continuous across the horizontal part of the interface. Dimensionally correct result erroneous owing to missing force on FBD: points deducted only in step 1 .
2. (80) Flow in the cavity of length π / k and depth d is driven by a velocity $U \sin k x$ (U constant) imposed on the upper boundary; on the lower boundary, there is no slip. The no-penetration condition holds on all boundaries of the cavity. (a) Assuming the lubrication approximation, pose the boundaryvalue problem governing v_{x}. (b) Solve the b.v.p. to find v_{x} in terms of the unknown pressure-gradient $\mathrm{d} p / \mathrm{d} x$. (c) By balancing mass on a suitable control volume, find the equation giving $\mathrm{d} p / \mathrm{d} x$ in terms of the boundary velocity, η, k and d. (d) Solve for, and sketch, p as a function of x, and interpret the behaviour of the pressure.

Solution

(a) For $0<y<d$ and $0<x<\pi / k, v_{x}(x, y)$ satisfies

$$
\begin{gather*}
\frac{\mathrm{d} p}{\mathrm{~d} x}=\eta \frac{\mathrm{d}^{2} v_{x}}{\mathrm{~d} y^{2}} \tag{2.1a}\\
\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0 \tag{2.1b}
\end{gather*}
$$

On $y=0$

$$
\begin{equation*}
v_{x}=0=v_{y} . \tag{2.1c,d}
\end{equation*}
$$

On $y=d$

$$
\begin{equation*}
v_{x}=U \sin k x, v_{y}=0 . \tag{2.1e,f}
\end{equation*}
$$

In addition, the no-penetration condition at the ends $x=0, x=\pi / k$ is applied in the form $\int_{0}^{d} v_{x} \mathrm{~d} y=0$.
Correctly posed BVP: (+20)
(b) Integrating (2.1a) once in y, we obtain

$$
\frac{\mathrm{d} v_{x}}{\mathrm{~d} y}=\frac{y}{\eta} \frac{\mathrm{~d} p}{\mathrm{~d} x}+A(x)
$$

$A(x)$ being an arbitrary function.
Integrating again, and imposing (2.1c), we find that

$$
\begin{equation*}
v_{x}=y F(x)+\frac{y^{2}}{2 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x} . \tag{2.2}
\end{equation*}
$$

Imposing (2.1e) we find that

$$
U \sin k x=F(x) d+\frac{d^{2}}{2 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x}
$$

so that

$$
\begin{equation*}
F(x)=\frac{U}{d} \sin k x-\frac{d}{2 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x} . \tag{2.3}
\end{equation*}
$$

Eliminating $F(x)$ between (2.2) and (2.3), we find that

$$
\begin{equation*}
v_{x}=U \frac{y}{d} \sin k x-\frac{1}{2 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x}\left(y d-y^{2}\right) . \tag{2.4}
\end{equation*}
$$

Eq. $(2.4)=(+20)$. Minor sign errors (-5). Correct equation (2.4) received (+20) for part (a) and (+20) for (b), even if BVP incomplete.
(c) Balancing mass on the control volume illustrated (broken rectangle), we see that the no-penetration condition at the ends requires

$$
\begin{equation*}
\int_{0}^{d} v_{x} \mathrm{~d} y=0 \tag{2.5}
\end{equation*}
$$

(We note that the remaining boundary conditions (2.1d), (2.1f) are imposed implicitly as part of the mass balance.)
Substituting for v_{x} from (2.4), then integrating, we find that

$$
\begin{align*}
0 & =\frac{1}{2} U d \sin k x-\frac{d^{3}}{12 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x} \\
& \Rightarrow \frac{\mathrm{~d} p}{\mathrm{~d} x}=6 \frac{\eta U}{d^{2}} \sin k x \tag{2.6}
\end{align*}
$$

Eq. $2.6=(+10)$
(d) Integrating (2.6), we obtain

$$
\begin{equation*}
p-p_{0}=-6 \frac{\eta U}{k d^{2}} \cos k x \tag{2.7}
\end{equation*}
$$

(The constant p_{0} is arbitrary.) We see that in order to conserve mass, the pressure increases from left to right.
Interpretation (+5)
Correct sketch of the cosine function $(+5)$
N.B. Because the imposed boundary velocity (2.1e) vanishes at the ends, $\frac{\mathrm{d} p}{\mathrm{~d} x}$ also vanishes there; as a result, (2.4) satisfies the no-penetration condition at the ends exactly. That would not be so if the imposed velocity did not vanish at the ends; in that case, there would be a different type of flow within a distance of the order of d of the ends. In that flow, v_{x} and v_{y} would be comparable, and the lubrication approximation would not hold.
3.(100) To reduce the pressure-gradient required to pump a very viscous liquid (certain crude oils, polymers) at a given flow rate in a tube of radius b, low-viscosity liquid (water) is added to the flow. Under certain operating conditions, the motion occurs as the parallel flow illustrated: the viscous liquid η_{1} occupies the core $0<r<a$, with low-viscosity liquid η_{2} forming a thin annular lubricating layer of uniform thickness $b-a$. At the tube wall at $r=b$, there is no slip.
(a) Without approximation, show that at $r=a$, the velocity gradient within the viscous liquid and the velocity at the interface satisfy the relation

$$
\begin{equation*}
\frac{\eta_{1}}{2 \eta_{2}} \frac{b^{2}-a^{2}}{a} \frac{\mathrm{~d} v_{x}}{\mathrm{~d} r}=-v_{x} \tag{3.1}
\end{equation*}
$$

(b) Briefly explain the relation between (3.1) and the Maxwell-Navier slip condition studied in class.
(c) If you were designing this flow to reduce the pressure-gradient, what condition would you impose on $\eta_{1}\left(b^{2}-a^{2}\right) /\left(2 a \eta_{2}\right)$ and tube radius b ? (Here, you may assume that $b-a \ll a$.)

Data

(a) Within each liquid the velocity $v_{x}(r)$ satisfies $\frac{\mathrm{d} p}{\mathrm{~d} x}=\frac{\eta}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\left[r \frac{\mathrm{~d} v_{x}}{\mathrm{~d} r}\right]$ (with the appropriate value of η). Because the streamlines are parallel, $\frac{\mathrm{d} p}{\mathrm{~d} x}$ is the same in both liquids. (b) At $r=a$, both v_{x} and the shear stress are continuous functions of r. (c) At $r=0, v_{x}$ is finite.

Solution

(a) Multiplying the momentum equation by r / η, then integrating once in r, we obtain

$$
\begin{equation*}
r \frac{\mathrm{~d} v_{x}}{\mathrm{~d} r}=\frac{r^{2}}{2 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x}+A \tag{3.2}
\end{equation*}
$$

Solving for $\mathrm{d} v_{x} / \mathrm{d} r$, then integrating again, we find that

$$
\begin{equation*}
v_{x}=\frac{r^{2}}{4 \eta} \frac{\mathrm{~d} p}{\mathrm{~d} x}+A \ln r+B \tag{3.3}
\end{equation*}
$$

Eq.(3.3) $=(+20) \quad$ (Integration constants A, B.) We apply these results separately for $r<a$ and for $a<r<b$.

For $r<a$ (within liquid 1), $A=0(=+10)$ because v_{x} is finite at $r=0$:

$$
\begin{align*}
v_{x} & =\frac{r^{2}}{4 \eta_{1}} \frac{\mathrm{~d} p}{\mathrm{~d} x}+c_{1} \tag{3.4a,b}\\
\frac{\partial v_{x}}{\partial r} & =\frac{r}{2 \eta_{1}} \frac{\mathrm{~d} p}{\mathrm{~d} x}
\end{align*}
$$

1s15-4

Eq. $(3.4 \mathrm{~b})=(+5)$ (We use c_{1}, \ldots to denote the integration constants evaluated for a specific region.)
For $a<r<b$ (within liquid 2), we relabel the integration constants so that $A=c_{2}, B=c_{3}$. Applying the no-slip condition $(=+5)$ at $r=b$, we obtain

$$
\begin{equation*}
0=\frac{b^{2}}{4 \eta_{2}} \frac{\mathrm{~d} p}{\mathrm{~d} x}+c_{2} \ln b+c_{3} \tag{3.5}
\end{equation*}
$$

Eq. $(3.5)=(+5)$
Eliminating c_{3} between (3.3) and (3.5), we obtain

$$
\begin{align*}
v_{x} & =-\frac{1}{4 \eta_{2}}\left(b^{2}-r^{2}\right) \frac{\mathrm{d} p}{\mathrm{~d} x}+c_{2} \ln \frac{r}{b} \\
\frac{\partial v_{x}}{\partial r} & =\frac{r}{2 \eta_{2}} \frac{\mathrm{~d} p}{\mathrm{~d} x}+\frac{c_{2}}{r} \tag{3.6a,b}
\end{align*}
$$

Eq. $(3.6 \mathrm{a})=(+5)$
At $r=a$ (liquid-liquid interface), we impose the condition that shear stress be continuous: $(+5)$

$$
\begin{aligned}
& \eta_{1} \frac{\partial v_{x}}{\partial r}=\eta_{2} \frac{\partial v_{x}}{\partial r} \\
\Rightarrow \frac{a}{2} \frac{\mathrm{~d} p}{\mathrm{~d} x}= & \frac{a}{2} \frac{\mathrm{~d} p}{\mathrm{~d} x}+\frac{c_{2}}{a} \\
& \Rightarrow c_{2}=0
\end{aligned}
$$

Result $c_{2}=0(+5)$ With $c_{2}=0$, we impose the condition that v_{x} be continuous: $(+5)$

$$
\begin{equation*}
\frac{1}{4 \eta_{1}} a^{2} \frac{\mathrm{~d} p}{\mathrm{~d} x}+c_{1}=-\frac{1}{4 \eta_{2}}\left(b^{2}-a^{2}\right) \frac{\mathrm{d} p}{\mathrm{~d} x} \tag{3.7}
\end{equation*}
$$

Detail $(+5)$
To obtain the final expression for v_{x}, we eliminate c_{1} between (3.7) and (3.4a):

$$
v_{x}= \begin{cases}-\frac{1}{4 \eta_{1}}\left(a^{2}-r^{2}\right) \frac{\mathrm{d} p}{\mathrm{~d} x}-\frac{1}{4 \eta_{2}}\left(b^{2}-a^{2}\right) \frac{\mathrm{d} p}{\mathrm{~d} x} & \text { if } r<a \tag{3.8a,b}\\ -\frac{1}{4 \eta_{2}}\left(b^{2}-r^{2}\right) \frac{\mathrm{d} p}{\mathrm{~d} x} & \text { if } a<r<b\end{cases}
$$

Result (+5)
Using (3.8a) to evaluate $\frac{\mathrm{d} v_{x}}{\mathrm{~d} r}$ and v_{x} at $r=a$, we obtain (3.1). Result(+5)
(b) Equation (3.1) has the form of the Maxwell-Navier slip condition with slip length $\ell=\eta_{1}\left(b^{2}-\right.$ $\left.a^{2}\right) /\left(2 a \eta_{2} ;(+10\right.$ points $) \ell$ increases with the viscosity η_{1} of the more viscous liquid. Though Eq. (3.1) contains a minus rather than the plus sign entering into the Maxwell-Navier condition, that difference is merely due to fact that r decreases into the core liquid rather than increasing according to the convention used in the Maxwell-Navier condition.)
(c) For the core flow to be significantly affected by slip, the slip length can not be small compared with tube radius $b .(+10)$ Because slip length here increases with the thickness $b-a$ of the lubricating layer, you would aim to select that thickness so that $\ell \approx a$.
N.B.

Eq.(3.1) can also be obtained as follows:
For $r<a$. Force balance on the inner liquid (1):

$$
\begin{equation*}
\pi a^{2} \frac{\mathrm{~d} p}{\mathrm{~d} x}=\left.2 \pi a \eta_{1} \frac{\partial v_{x}}{\partial r}\right|_{r=a} \tag{3.9}
\end{equation*}
$$

For $a<r<b$.
Step 1: integrate the momentum equation from $r=a$ to arbitrary $r<b$.
Step 2: solve the resulting equation for $\partial v_{x} / \partial r$, then integrate from $r=b$ to arbitrary r. Impose no-slip at $r=b$.
Step 3: evaluate the resulting equation at $r=a$:

$$
\begin{equation*}
2 \eta_{2} v_{x}(a)=-\frac{1}{2}\left(b^{2}-a^{2}\right) \frac{\mathrm{d} p}{\mathrm{~d} x}+\left\{\left.2 a \eta_{2} \frac{\partial v_{x}}{\partial r}\right|_{r=a}-a^{2} \frac{\mathrm{~d} p}{\mathrm{~d} x}\right\} \ln \frac{a}{b} \tag{3.10}
\end{equation*}
$$

In Eq.(3.10), term in braces vanishes by (3.9), and continuity of the shear stress at $r=a$. Step 4: from (3.10) thus simplified, eliminate $\mathrm{d} p / \mathrm{d} x$ using (3.9). The result is Eq.(3.1).

