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Mid–term Test, S15 Prof S. Morris

1.(70) A cup of water spilt on a plastic countertop spreads to form an irregularly shaped puddle. By
balancing horizontal forces acting on the water in the control volume shown in figure (b), find the
puddle depth d in terms of water density ρ, surface tension γ, contact angle θ and g. As part of your
solution, draw a free–body showing the horizontal forces in play.
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Solution

The horizontal forces are shown in the figure. I have used the gauge pressure; otherwise, to the pressure
force shown on the diagram you should add p0d, and you also add a pressure force p0d acting the left
on the right hand vertical face of the volume. (Those contributions cancel, of course.)

Equating the resultant horizontal force to zero, then solving for d, we obtain

d =

√

2γ

ρg
(1 − cos θ).

We note that d is of order the capillary length.

Step 1: 3 forces correctly given on the free–body diagram: 3× 20 = (+60)

Step 2: Dimensionally correct final result: (+10).

Misc: trivial slips in sign -1 point; did not deduct for failing to note that p is continuous across the
horizontal part of the interface. Dimensionally correct result erroneous owing to missing force on FBD:
points deducted only in step 1.
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2. (80) Flow in the cavity of length π/k and depth d is driven by a velocity U sin kx (U constant)
imposed on the upper boundary; on the lower boundary, there is no slip. The no–penetration condition
holds on all boundaries of the cavity. (a) Assuming the lubrication approximation, pose the boundary–
value problem governing vx. (b) Solve the b.v.p. to find vx in terms of the unknown pressure–gradient
dp/dx. (c) By balancing mass on a suitable control volume, find the equation giving dp/dx in terms
of the boundary velocity, η, k and d. (d) Solve for, and sketch, p as a function of x, and interpret the
behaviour of the pressure.

π /k
x

y

d

O

U sin kx

Solution

(a) For 0 < y < d and 0 < x < π/k, vx(x, y) satisfies

dp

dx
= η

d2vx

dy2
. (2.1a)

∂vx

∂x
+

∂vy

∂y
= 0. (2.1b)

On y = 0
vx = 0 = vy. (2.1c, d)

On y = d
vx = U sin kx, vy = 0. (2.1e, f)

In addition, the no–penetration condition at the ends x = 0, x = π/k is applied in the form
∫ d

0
vx dy = 0.

Correctly posed BVP: (+20)

(b) Integrating (2.1a) once in y, we obtain

dvx

dy
=

y

η

dp

dx
+ A(x),

A(x) being an arbitrary function.

Integrating again, and imposing (2.1c), we find that

vx = yF (x) +
y2

2η

dp

dx
. (2.2)

Imposing (2.1e) we find that

U sin kx = F (x)d +
d2

2η

dp

dx

so that

F (x) =
U

d
sin kx −

d

2η

dp

dx
. (2.3)

1s15–2



Eliminating F (x) between (2.2) and (2.3), we find that

vx = U
y

d
sin kx −

1

2η

dp

dx
(yd − y2). (2.4)

Eq.(2.4)=(+20). Minor sign errors (-5). Correct equation (2.4) received (+20) for part (a) and (+20)
for (b), even if BVP incomplete.

(c) Balancing mass on the control volume illustrated (broken rectangle), we see that the no–penetration
condition at the ends requires

∫ d

0

vx dy = 0. (+10) (2.5)

(We note that the remaining boundary conditions (2.1d), (2.1f) are imposed implicitly as part of the
mass balance.)

Substituting for vx from (2.4), then integrating, we find that

0 =
1

2
Ud sinkx −

d3

12η

dp

dx

⇒
dp

dx
= 6

ηU

d2
sin kx (2.6)

Eq.2.6= (+10)

(d) Integrating (2.6), we obtain

p − p0 = −6
ηU

kd2
cos kx. (+10) (2.7)

(The constant p0 is arbitrary.) We see that in order to conserve mass, the pressure increases from left
to right.

Interpretation (+5)

Correct sketch of the cosine function (+5)

N.B. Because the imposed boundary velocity (2.1e) vanishes at the ends, dp
dx

also vanishes there; as a
result, (2.4) satisfies the no–penetration condition at the ends exactly. That would not be so if the
imposed velocity did not vanish at the ends; in that case, there would be a different type of flow within a
distance of the order of d of the ends. In that flow, vx and vy would be comparable, and the lubrication
approximation would not hold.
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3.(100) To reduce the pressure–gradient required to pump a very viscous liquid (certain crude oils,
polymers) at a given flow rate in a tube of radius b, low–viscosity liquid (water) is added to the flow.
Under certain operating conditions, the motion occurs as the parallel flow illustrated: the viscous liquid
η1 occupies the core 0 < r < a, with low–viscosity liquid η2 forming a thin annular lubricating layer of
uniform thickness b − a. At the tube wall at r = b, there is no slip.

(a) Without approximation, show that at r = a, the velocity gradient within the viscous liquid and
the velocity at the interface satisfy the relation

η1

2η2

b2
− a2

a

dvx

dr
= −vx. (3.1)

(b) Briefly explain the relation between (3.1) and the Maxwell–Navier slip condition studied in class.

(c) If you were designing this flow to reduce the pressure–gradient, what condition would you impose
on η1(b

2
− a2)/(2aη2) and tube radius b? (Here, you may assume that b − a ≪ a.)

Data

(a) Within each liquid the velocity vx(r) satisfies dp
dx

= η
r

d

dr

[

r dvx

dr

]

(with the appropriate value of η).

Because the streamlines are parallel, dp
dx

is the same in both liquids. (b) At r = a, both vx and the
shear stress are continuous functions of r. (c) At r = 0, vx is finite.

η 2

η 1

r

x

a
b

O

Solution

(a) Multiplying the momentum equation by r/η, then integrating once in r, we obtain

r
dvx

dr
=

r2

2η

dp

dx
+ A. (3.2)

Solving for dvx/dr, then integrating again, we find that

vx =
r2

4η

dp

dx
+ A ln r + B. (3.3)

Eq.(3.3)=(+20) (Integration constants A, B.) We apply these results separately for r < a and for
a < r < b.

For r < a (within liquid 1), A = 0 (=+10)because vx is finite at r = 0:

vx =
r2

4η1

dp

dx
+ c1

∂vx

∂r
=

r

2η1

dp

dx
.

(3.4a, b)
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Eq.(3.4b)=(+5) (We use c1, . . . to denote the integration constants evaluated for a specific region.)

For a < r < b (within liquid 2), we relabel the integration constants so that A = c2, B = c3. Applying
the no–slip condition (=+5) at r = b, we obtain

0 =
b2

4η2

dp

dx
+ c2 ln b + c3. (3.5)

Eq.(3.5)=(+5)

Eliminating c3 between (3.3) and (3.5), we obtain

vx = −
1

4η2

(b2
− r2)

dp

dx
+ c2 ln

r

b
.

∂vx

∂r
=

r

2η2

dp

dx
+

c2

r
.

(3.6a, b)

Eq.(3.6a)=(+5)

At r = a (liquid–liquid interface), we impose the condition that shear stress be continuous:(+5)

η1

∂vx

∂r
=η2

∂vx

∂r

⇒
a

2

dp

dx
=

a

2

dp

dx
+

c2

a
⇒ c2 = 0

Result c2 = 0 (+5) With c2 = 0, we impose the condition that vx be continuous:(+5)

1

4η1

a2
dp

dx
+ c1 = −

1

4η2

(b2
− a2)

dp

dx
(3.7)

Detail (+5)

To obtain the final expression for vx, we eliminate c1 between (3.7) and (3.4a):

vx =

{

−
1

4η1

(a2
− r2) dp

dx
−

1

4η2

(b2
− a2) dp

dx
if r < a,

−
1

4η2

(b2
− r2) dp

dx
if a < r < b

(3.8a, b)

Result (+5)

Using (3.8a) to evaluate dvx

dr
and vx at r = a, we obtain (3.1). Result(+5)

(b) Equation (3.1) has the form of the Maxwell–Navier slip condition with slip length ℓ = η1(b
2
−

a2)/(2aη2; (+10 points) ℓ increases with the viscosity η1 of the more viscous liquid. Though Eq. (3.1)
contains a minus rather than the plus sign entering into the Maxwell–Navier condition, that difference
is merely due to fact that r decreases into the core liquid rather than increasing according to the
convention used in the Maxwell–Navier condition.)

(c) For the core flow to be significantly affected by slip, the slip length can not be small compared with
tube radius b.(+10) Because slip length here increases with the thickness b− a of the lubricating layer,
you would aim to select that thickness so that ℓ ≈ a.
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N.B.

Eq.(3.1) can also be obtained as follows:

For r < a. Force balance on the inner liquid (1):

πa2
dp

dx
= 2πaη1

∂vx

∂r

∣

∣

∣

r=a
(3.9)

For a < r < b.

Step 1: integrate the momentum equation from r = a to arbitrary r < b.

Step 2: solve the resulting equation for ∂vx/∂r, then integrate from r = b to arbitrary r. Impose no–slip
at r = b.

Step 3: evaluate the resulting equation at r = a:

2η2vx(a) = −
1

2
(b2

− a2)
dp

dx
+

{

2aη2

∂vx

∂r

∣

∣

∣

r=a
− a2

dp

dx

}

ln
a

b
(3.10)

In Eq.(3.10), term in braces vanishes by (3.9), and continuity of the shear stress at r = a.

Step 4: from (3.10) thus simplified, eliminate dp/dx using (3.9). The result is Eq.(3.1).

END

1s15–6


