
Math 110, Spring 2015: Midterm Solutions

These are not intended as “model answers”; in many cases far more explanation is provided than would
be necessary to receive full credit. The goal here is to make sure you understand the questions and their
solutions. Accordingly, don’t feel obligated to read all of this in detail; if you were confused or curious
about a particular question, you can read the discussion to drill down into it. That said, it is far more
productive to try to work out the correct solutions for yourself first.

Question 1. For each statement below, determine whether it is true or not.

(1) The space of degree n polynomials in one variable is a vector space.

Solution: False. The space in question is not closed under addition, as the sum of two degree-n
polynomials may have degree strictly less than n. (The space of polynomials in one variable of degree
less than or equal to n is a vector space over the coefficient field F ; for F = R, this space is the
familiar Pn(R) you have worked with throughout the course.)

(2) The dimension of the vector space of n× n matrices such that At = A is equal to n(n− 1)/2.

Solution: False. The correct dimension is n2−n
2 + n = n(n+1)

2 . (Roughly speaking, an incorrect
answer of “True” might result from “failing to account for the diagonals” of symmetric n×nmatrices.)

(3) Any subset of a set of linearly dependent vectors is linearly dependent.

Solution: False. For example, to take this statement to its extreme, consider the set V of all
vectors in the vector space V ; this set is linearly dependent, as it contains the zero vector of V . So if
the statement were true, it would mean that any subset of V is linearly dependent ; in other words,
there would be no such thing as a “linearly independent set” in any vector space. Hopefully that
example makes the statement seem absurd.

(4) Any two vector spaces of dimension n are isomorphic to each other.

Solution: True. This is proven in the book. One particularly important way of looking at this is to
note that—if one chooses a basis β of an n-dimensional vector space V—the “coordinate mapping”
x 7→ [x]β gives an isomorphism from V to Rn. More generally, say V and W are n-dimensional
vector spaces with bases {v1, . . . , vn} and {w1, . . . , wn}, respectively. Then there exists a unique
linear transformation T : V → W such that T(vk) = wk for all 1 ≤ k ≤ n (by Theorem 2.6 in the
book); by a homework exercise, T is an isomorphism. NB: It has been emphasized to you that, so
far in this course, all vector spaces are assumed to be over the field R. So in the context of the course
thus far, considering two vector spaces of dimension n over two different fields would miss the point
of this question.

(5) If a set S of vectors generates a vector space V , then any vector in V can be written uniquely as a
linear combination of the vectors in S.

Solution: False. The problem is with the word “uniquely”; the statement fails for any generating
set S that is not also linearly independent, i.e. for any generating set S that is not a basis for V .
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(6) The intersection of any two subspaces of a vector space V is a subspace of V .

Solution: True. Proving this is a basic application of the definition of “subspace.”

(7) If V is isomorphic to W , then V ∗ is isomorphic to W ∗.

Solution: True. I believe this was proven in lecture.

Remark: Here is a line of reasoning that works in the finite-dimensional setting: “By the construc-
tion of the dual basis, if V is finite-dimensional, then dim(V ) = dim(V ∗), so V is isomorphic to V ∗.
Similarly, W is isomorphic to W ∗. Thus, because isomorphism of vector spaces is an equivalence
relation, V ∗ must be isomorphic to W ∗.” That line of reasoning fails if V (and hence W ) is infinite-
dimensional ; indeed, an infinite-dimensional vector space is never isomorphic to its dual space.1 So
the best way to reason through this question is to prove the following result, of which the question
is the special case V ′ = W ′ = R:

Proposition 1. Suppose V is isomorphic to W and V ′ is isomorphic to W ′. Then L(V, V ′) is
isomorphic to L(W,W ′).

Proof. Let ϕ : V →W and ϕ′ : V ′ →W ′ be isomorphisms. Then check that the map Φ : L(V, V ′)→
L(W,W ′) defined by Φ(T) = ϕ′ ◦ T ◦ ϕ−1 is an isomorphism. (Draw a “commutative diagram.”)

(8) If V and W are two vector spaces of the same dimension and T : V →W is a linear transformation,
then there exist bases in V and W such that the matrix of T with respect to these bases is diagonal.

Solution: True. This was a homework exercise (Exercise 2.2.16 of Homework 4).

(9) If A and B are two matrices such that AB is the identity matrix, then BA is also the identity matrix.

Solution: False. The statement is true if one assumes additionally that A and B are square
matrices. (See Exercise 2.4.10.) A counterexample to the general statement given here is

A =
[
1 0

]
, B =

[
1
0

]
.

(10) If T : V → V is a linear transformation and A1, A2 are the matrices representing T with respect to
bases β1, β2 in V , then the trace of A1 is equal to the trace of A2.

Solution: True. Let Q = [I]β2β1 be the change-of-coordinates matrix that changes β1-coordinates
into β2-coordinates. Then we have (see Theorem 2.23 and its proof)

A1 = [T]β1β1 = [I ◦T ◦ I]β1β1 = [I]β1β2 [T]β2β2 [I]β2β1 = Q−1A2Q.

In particular, A1 and A2 are similar matrices; by Exercise 2.5.10 of Homework 5, tr(A1) = tr(A2).

1Purely extracurricular comment: I would not want this statement to confuse you if you encounter “dual spaces” in analysis
courses. Analysts use a different notion of the “continuous dual” of a vector space, and there are infinite-dimensional vector
spaces that are isomorphic to their continuous dual spaces in an appropriate sense. By contrast, in this course we consider
the “algebraic dual” of a vector space V , and no infinite-dimensional vector space V is isomorphic to its algebraic dual space.
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Question 2: Determine whether the following polynomials are linearly dependent or independent in the
vector space P2(R) of real polynomials of degree less than or equal to 2.

(a) 1 + x+ x2, −1 + 2x2, 3 + x+ 4x2;

Solution: These three polynomials are linearly independent. Before starting to work, one should
note that dim

(
P2(R)

)
= 3, so it is possible for a set of three vectors to be linearly independent.

Accordingly, we just check the definition of linear independence: We want to check whether or not
a “dependence relation”

c1(1 + x+ x2) + c2(−1 + 2x2) + c3(3 + x+ 4x2) = 0P2(R)

forces the coefficients c1, c2, c3 all to be zero. The dependence relation is equivalent to the system of
linear equations 

c1 − c2 + 3c3 = 0
c1 + c3 = 0
c1 + 2c2 + 4c3 = 0.

Solving the system yields the unique solution c1 = c2 = c3 = 0, so the three polynomials are indeed
linearly dependent.

(c) 13 + 2x+ x2, 2 + 8x+ 2x2, x+ 26x2, 15 + 6x+ 9x2.

Solution: These polynomials are linearly dependent. Indeed, since 4 > 3 = dim
(

P2(R)
)
, any set

of four distinct polynomials in P2(R) must be linearly dependent.

Remark: Even if you went through the trouble of setting up a system of linear equations as in
part (a), you could notice that it would be a homogeneous linear system of four equations in three
unknowns; hopefully you learned in Math 54 that such a system must have infinitely many solutions.
That’s just a long-winded way of saying “four distinct vectors in a three-dimensional vector space
must be linearly dependent.”
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Question 3: Let M0
3×3(R) be the subset of the vector space M3×3(R) of all real 3 × 3 matrices, which

consists of matrices A whose column sums are 0, that is

A1i +A2i +A3i = 0; i = 1, 2, 3.

(a) Prove that M0
3×3(R) is a subspace of M3×3;

Solution: First we note that the zero matrix 0 ∈ M3×3(R) is an element of M0
3×3(R). Indeed, since

all entries of 0 are zero, certainly all of its columns must sum to zero. To conclude, we simply verify
that M0

3×3(R) is closed under addition and scalar multiplication. Let A,B ∈ M0
3×3(R) and c ∈ R be

arbitrary. Then, for each i = 1, 2, 3, we have

(A+ cB)1i + (A+ cB)2i + (A+ cB)3i = (A1i +A2i +A3i) + c(B1i +B2i +B3i) = 0 + c · 0 = 0,

so A+ cB ∈ M0
3×3(R). Thus, M0

3×3(R) is closed under addition and scalar multiplication.

(b) Construct a basis of M0
3×3.

Solution: To find a basis, it’s certainly very helpful to know the dimension of M0
3×3(R). To compute

the dimension, note that M0
3×3(R) can naturally be expressed as the kernel of a linear transformation.

Namely, consider T : M3×3(R) −→ R3 defined by

T(A) = (A11 +A21 +A31 , A12 +A22 +A32 , A13 +A23 +A33);

that is, the j-th entry of T(A) is the j-th column sum of A. Then by definition M0
3×3(R) = N(T).

Furthermore, it’s pretty easy to see that T is onto; I’ll leave that as an exercise. So by the Dimension
Theorem,

rank(T) + nullity(T) = dim
(
R3
)

+ dim
(
M0

3×3(R)
)

= dim
(
M3×3(R)

)
= 9,

so M0
3×3(R) has dimension 6. So any collection of six linearly independent matrices in M0

3×3(R) must
form a basis for the subspace; a natural choice of such a collection is

S = {Eij − E3j | i = 1, 2; j = 1, 2, 3},

where Eij is the matrix whose (i, j) entry is 1 and all of whose other entries are 0. Showing that S
is linearly independent is fairly straightforward.
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Question 4: Consider a function T : P3(R)→ P2(R), such that T
(
p(x)

)
= p′(x) + 5p′′(x). (Here Pn(R)

denotes the vector space of real polynomials of degree less than or equal to n in one variable.)

(a) Prove that T is a linear transformation;

Solution: Let p(x), q(x) ∈ P3(R) and λ ∈ R be arbitrary. Then

T
(
λp(x) + q(x)

)
= (λp+ q)′(x) + 5(λp+ q)′′(x)

= (λp)′(x) + q′(x) + 5(λp)′′(x) + 5q′′(x)

= λp′(x) + q′(x) + 5λp′′(x) + 5q′′(x)

= λ
(
p′(x) + 5p′′(x)

)
+
(
q′(x) + q′′(x)

)
= λT

(
p(x)

)
+ T

(
q(x)

)
,

where we’ve used linearity of the differentiation operator. So T is linear.

(b) Choose bases β of P3(R) and γ of P2(R) and find the matrix [T]γβ of T with respect to these bases.

Solution: By far the most popular choice of bases was β = {1, x, x2, x3} and γ = {1, x, x2};
these bases make the computations involved particularly simple. The j-th column of [T]γβ is the
γ-coordinate vector of the image under T of the j-th basis vector in β. So we just compute those
coordinate vectors:

T(1) = (1)′ + 5(1)′′ = 0 = 0 · 1 + 0 · x+ 0 · x2 =⇒ [T(1)]γ =

0
0
0

 ;

T(x) = 1 = 1 · 1 + 0 · x+ 0 · x2 =⇒ [T(x)]γ =

1
0
0

 ;

T(x2) = 2x+ 10 = 10 · 1 + 2 · x+ 0 · x2 =⇒ [T(x2)]γ =

10
2
0

 ;

T(x3) = 3x2 + 30x = 0 · 1 + 30 · x+ 3 · x2 =⇒ [T(x3)]γ =

 0
30
3

 .
So

[T]γβ =

 0 1 10 0
0 0 2 30
0 0 0 3

 .
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Question 5:

(a) Give the definition of an isomorphism between two vector spaces.

Solution 1: “An isomorphism between two vector spaces V and W is an invertible linear transfor-
mation T : V →W .”

Solution 2: “An isomorphism between two vector spaces V and W is a map T : V → W that is
linear, one-to-one (injective), and onto (surjective).” (Of course, the two definitions are equivalent.)

(b) Prove that if there exists an isomorphism between two finite-dimensional vector spaces, then these
vector spaces have the same dimension.

Solution 1: Suppose T : V → W is an isomorphism between the finite-dimensional vector spaces
V and W . Then because T is one-to-one, its kernel is trivial, i.e. N(T) = {0} ⊆ V . Furthermore,
because T is onto, its range must be all of W , i.e. R(T) = W . By the Dimension Theorem,

dim(V ) = dim
(

N(T)
)

+ dim
(

R(T)
)

= dim
(
{0}

)
+ dim(W ) = 0 + dim(W ) = dim(W ),

as desired.

Solution 2: Suppose T : V →W is an isomorphism between the finite-dimensional vector spaces V
and W . Fix a basis β = {v1, . . . , vn}, and consider the set

γ := {T(v1), . . . ,T(vn)} ⊆W ;

we claim γ is a basis for W . To see that γ is linearly independent, suppose that c1T(v1) + . . . +
cnT(vn) = 0W for some scalars ck. But then

T(c1v1 + . . .+ cnvn) = 0 =⇒ c1v1 + . . .+ cnvn ∈ N(T) =⇒ c1v1 + . . .+ cnvn = 0V

since T is one-to-one. But since β is a basis, the vk are linearly independent, and so the ck must all
be equal to zero. So γ is linearly independent.

To see that γ spans W , let w ∈ W be arbitrary. Because T is onto, w ∈ R(T), so there exists some
v ∈ V such that T(v) = w. Writing v in terms of the basis β, by linearity of T we obtain

w = T(v) = T(a1v1 + . . .+ anvn) = a1T(v1) + . . .+ anT(vn)

for some scalars ak, so that w ∈ span(γ). Since w was arbitrary, we’ve shown that γ spans W . So
we see that γ is a basis for W ; since γ = {T(v1), . . . ,T(vn)} contains n vectors, we see that

dim(W ) = n = dim(V ).
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Question 6: Let V be a two-dimensional vector space and T : V → V a linear transformation. Suppose
that β = {x1, x2} and γ = {y1, y2} are two bases in V such that

x1 = y1 + y2, x2 = y1 + 2y2.

Find [T]γγ if

[T]ββ =

(
2 3
1 4

)
.

Solution 1 (direct computation): This approach just uses the definition of the matrix representation
of a linear transformation with respect to a pair of bases. From that definition, we know that the j-th
column of [T]ββ is the β-coordinate vector of T(xj). So we have

[T(x1)]β =

[
2
1

]
=⇒ T(x1) = 2 · x1 + 1 · x2 = 2(y1 + y2) + 1(y1 + 2y2) = 3y1 + 4y2;

[T(x2)]β =

[
3
4

]
=⇒ T(x2) = 3x1 + 4x2 = 7y1 + 11y2.

(Here we’ve used the given expressions for xj in terms of the yk.) Since we want [T]γγ , we need to compute
T(y1) and T(y2). From what we’ve already done, we could compute these if we knew how to express y1
and y2 as linear combinations of the xk. From the equations x1 = y1 + y2 and x2 = y1 + 2y2, it’s pretty
easy to solve for the yj : y1 = 2x1 − x2, y2 = −x1 + x2. So we compute

T(y1) = T(2x1 − x2) = 2T(x1)− T(x2) = −y1 − 3y2 =⇒ [T(y1)]γ =

[
−1
−3

]
;

T(y2) = T(−x1 + x2) = 4y1 + 7y2 =⇒ [T(y2)]γ =

[
4
7

]
.

So [T]γγ =

[
−1 4
−3 7

]
.

Solution 2(change-of-coordinates matrix): Remark: Many people took this approach, and many
people wrote down the matrix that changes γ-coordinates into β-coordinates instead of vice versa. Carrying
this out carefully step-by-step as here might help you avoid that error.

As in the discussion of part (10) of Question 1 above, we have

[T]γγ = [I]γβ [T]ββ [I]βγ .

We can compute the inverse of the change-of-coordinates matrix Q := [I]βγ as follows:

Q−1 = [I]γβ =
[

[I(x1)]γ [I(x2)]γ

]
=
[

[x1]γ [x2]γ

]
=
[

[y1 + y2]γ [y1 + 2y2]γ

]
=

[
1 1
1 2

]
.

(In the intermediate steps I have denoted the columns of the matrix as γ-coordinate vectors.) Inverting
this matrix, we obtain

Q =
(
Q−1

)−1
= [I]βγ =

[
2 −1
−1 1

]
.

So, as we said above,

[T]γγ = [I]γβ [T]ββ [I]βγ = Q−1 [T]ββ Q =

[
−1 4
−3 7

]
.
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Question 7: Consider the vector space W = {p(x) = ax + bx2 | a, b ∈ R}. Let f1 and f2 be the linear
functionals on W , such that f1[p(x)] = p(1) and f2[p(x)] = p(2). Find the basis of W to which {f1, f2} is
the dual basis.

Solution: (Based on the framing of the question, you do not need to prove that W is a vector space;
however, it is hopefully clear to you that W is a two-dimensional subspace of P2(R).) Let’s write the
desired basis of W as

β =
{
a1x+ b1x

2 , a2x+ b2x
2
}
.

By definition of the dual basis β∗ = {f1, f2} to β, we must have

fi[ajx+ bjx
2] = δij

for i = 1, 2 and j = 1, 2. Taking j = 1, this leads to a system of equations{
f1[a1x+ b1x

2] = 1
f2[a1x+ b1x

2] = 0
⇐⇒

{
a1 + b1 = 1
2a1 + 4b1 = 0

⇐⇒
{
a1 = 2
b1 = −1.

Similarly, taking j = 2 yields{
f1[a2x+ b2x

2] = 0
f2[a2x+ b2x

2] = 1
⇐⇒

{
a2 + b2 = 0
2a2 + 4b2 = 1

⇐⇒
{
a2 = −1

2
b2 = 1

2 .

So the desired basis is

β =

{
2x− x2 , −1

2
x+

1

2
x2
}
.
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Question 8: Let V be a finite-dimensional vector space, and T : V → V be a linear transformation,
represented by matrix A = [T]ββ with respect to some basis β of V .

Prove that if the kernel of T contains the image of T, then A2 = 0.
Give an example of a transformation satisfying this property.

Solution: Assume that R(T) ⊆ N(T). The first thing to notice is that

T2 := T ◦ T = T0 : V −→ V,

where T0 denotes the zero transformation on V . Indeed, for any x ∈ V , T(x) ∈ R(T) by definition of the
range (or image, using the terminology of the question) of T; by our assumption, this implies T(x) ∈ N(T).
So for any x ∈ V , we have

T2(x) = T
(
T(x)

)
= 0 ,

by definition of the kernel N(T). So T2 = T0 as claimed.

Now we translate the above result to a statement about the matrix representation A = [T]ββ. We have

A2 = AA = [T]ββ [T]ββ = [T ◦ T]ββ = [T2]ββ = [T0]
β
β.

But the matrix representation of the zero transformation T0 with respect to any basis is the zero matrix,
so we have A2 = 0 as desired.

The most obvious example of a transformation satisfying the property R(T) ⊆ N(T) is the zero trans-
formation T = T0 : V → V on any vector space V . But it’s instructive to give a nontrivial example of such
a T, since more than a few people seemed to think that the condition R(T) ⊆ N(T) implies that T = T0.
That is by no means true:

For example, consider T : R2 → R2 defined by T(x, y) = (y, 0); you’ve encountered this transformation
on your homework. The kernel of T is the x-axis in R2:

N(T) =
{

(x, y) ∈ R2 | (y, 0) = (0, 0)
}

=
{

(x, y) ∈ R2 | y = 0
}

=
{

(x, 0) ∈ R2 |x ∈ R
}
.

But the range of T is also the x-axis:

R(T) =
{

(y, 0) ∈ R2 | y ∈ R
}
.

So here the kernel of T contains the range of T (in fact, in this case the kernel is equal to the range). But
of course T is not the zero transformation on R2. Taking β to be the standard basis of R2, you can check
that the matrix representation

A = [T]ββ =

[
0 1
0 0

]
satisfies A2 = 0.
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