
H7C - Midterm #1 Solutions

1a) The wavelength is defined as λ = 2π/k where k is the wavenumber. In this

example, we see that k = B so we have λ = 2π/B

1b) The amplitude of the electric field is given by the magnitude of the complex
amplitude |z|2 = zz∗. In this case we have |E0|2 = A(1 + i) × A(1 − i) = 2A2.

So the electric field amplitude is E0 =
√

2A .

1c) The amplitude of the magnetic field of an EM wave is given by B0 = E0/v,
where v is the velocity. In this example, we see that the velocity is v = ω/k =
C/B (which may not be equal to the speed of light in vacuum, since the wave

is in some medium). So B0 =
√

2AB/C .

1d) The phase of a complex number z̃ = a+ bi is given by δ = tan−1 b/a. Here

this gives δ = tan−1(1), or δ = π/4 .

Note that an easy way to get parts 1a) and 1b) is to draw the amplitude A(1+i)
in the complex plane, where it looks like a 2D vector (A,A). The length of this
vector is clearly

√
2A and the angle it makes with the x-axis is π/4, or 45◦.

2) Scattering is caused when an EM wave accelerates a charged particle, which
in turn reradiates EM waves. In class and in homeworks we analyzed this by
first looking at the equation of motion of the particle. Since this is a free particle
(not bound by any ”spring” force to a proton) we have just

ma = eE(t)→ a = eE(t)/m (1)

The power radiated by an accelerated charge is given by Larmor’s formula. The
constants don’t matter much here (we only care about the mass dependence),
what matters is that the power is proportional to acceleration squared.

P ∝ a2 ∝ m−2 (2)

The scattering cross-section describes how much the particle re-radiates incident
light. It is therefore proportional to P (in particular, σ = 〈P 〉/〈I〉). So

σ ∝ P ∝ a2 ∝ m−2 (3)

Since everything is the same for an electron and muon except for the mass. We
find

σµ−/σe− = m2
e−/m

2
µ− = 1/2002 (4)
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This agrees with our intuition. A muon is heavier, and so will not be accelerated
as much by an incident wave. Thus it will not scatter (reradiate) as much light.

3) This wave looks like the superposition of a two cosines: a more slowly oscil-
lating one with wavelength (read off of the axis) of λ1 ≈ 0.5 µm and one more
rapidly oscillating one with λ2 ≈ 0.1 µm. Using the relation ω = 2πc/λ these
correspond to angular frequencies of ω1 ≈ 4 × 1015 and ω2 ≈ 20 × 1015. The
Fourier transform shows how much of each sinusoid contributes to the wave-
form. Here we have two contributions sharply peaked (almost delta functions)
around ω1 and ω2. The low frequency (ω1) oscillation has larger amplitude, so
the Fourier transform looks like

4a) This is analogous to our treatment of EM waves in matter. We found in
that case that the wave equation then had an extra term (due to the induced
current in the material) which wound up making the speed of light dependent
on wavelength. Our approach to treating such problems was to guess a standard
monochromatic plane wave solution

f = f0e
i(kx−ωt) (5)

Plugging this into the wave equation given (note that each time derivative of
this function gives a factor of −iω times the function, while each space derivative
gives a factor ik) we find

(ik)2f =
µ

T
(−iω)2f − α(ik)4f (6)

Canceling out the f and using i2 = −1 and i4 = 1

−k2 = −ω2 µ

T
− αk4 (7)

Rearranging gives

ω2 =
T

µ
(k2 − αk4) =

T

µ
k2(1− αk2) (8)
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The velocity of a wave at a given wavelength is given by the phase velocity
vp = ω/k, so

vp =

√
T

µ

[
1− α4π2

λ2

]1/2
(9)

where we used k = 2π/λ.

4b) The peak of a packet of waves moves at the group velocity, vg = ∂ω/∂k.
We have from above

ω =

√
T

µ
(k2 − αk4)1/2 (10)

Carrying out the derivative

vg =

√
T

µ

2k − 4αk3

2(k2 − αk4)1/2
(11)

which we can rewrite, if we want

vg =

√
T

µ

1− 2αk2

(1− αk2)1/2
(12)

where k = 2π/λ.

4c) Dispersion of a wave packet is caused by the different cosine components of
the wave moving at different speeds, which causes the packet shape to change.
The different cosines move at different speeds because of the extra term in the
wave equation (in this case the stiffness term). From the solution to part 4a)
we see that all waves will move at the same speed if we can ignore the second
term in parenthesis, or if

4π2α

λ2
� 1 (13)

or
λ�

√
2πα (14)

In this long wavelength limit, vp = vg =
√
T/µ, independent of wavelength. The

waves on a string behave just as if the string were ideal (i.e., if you neglected
the extra term proportional to α in the wave equation).

5) Light coming in to this glass tube at small angle θ will hit the edge of the
tube at a glancing angle greater than the critical angle (θc = sin−1(1/n)) and
be totally internally reflected down like a fiber optic. If the angle θ is increased,
the light will eventually hit the edge with an angle < θc and escape out of the
side of the tube. In glass (and most materials) blue light moves more slowly
than red light because blue is closer to the resonance frequencies of the material
(which are typically in the UV). The slower velocity of blue light means a higher
index of refraction, so by Snell’s law n1 sin θ1 = n2 sin θ2 blue light is bent more
towards the horizontal axis than red light. The red light will thus hit the edge
at a smaller angle, and escape to the viewer shown earlier.
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