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Problem 1 Solution

Physics 7A Section 3 Midterm 2 (Corsini)

November 2014

When the mass m1 travels upward over the distance h we can use energy
conservation to find its velocity v1 immediately before the collision with the
mass m2. We have
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2
m1v

2
0 =

1

2
m1v

2
1 + m1gh. (1)

Momentum is conserved during the collision, so we can write an equation
relating the momentum of m1 immediately before the collision to the mo-
mentum of the combined mass of m1 + m2 immediately after the collision.
This equation is

m1v1 = (m1 + m2) vf . (2)

Since the spring force and gravity are the only two forces acting on the
combined m1 + m2 mass, we can use energy conservation to calculate how
far up ∆y this mass goes. Remembering that the string was already initially
stretched by an amount d in order to hold up the block m2, where a force
balance equation gives us that d = m2g

k
, we can write our energy conservation

equation as
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− ∆y

)2

+ (m1 + m2)g∆y.

This simplifies down to

1

2
(m1 + m2)v

2
f =

1

2
k∆y2 + m1g∆y. (3)

Combining equations (1), (2) and (3) and solving for v0 yields



v0 =

(
2(m1 + m2)

m2
1

(
1

2
k∆y2 + m1g∆y

)
+ 2gh

) 1
2

. (4)

Note on solutions: A very common error was to write equation (3)
with the term (m1 + m2)g∆y instead of m1g∆y. There are several ways
to see why this is (the best way is to work it out for one’s self), but one
quick explanation is that the 1

2
k∆y2 term already includes the effect of the

gravitational potential energy for mass m2, but not for mass m1.



Problem 2 (total: 20 Points)

The known variables are M, r, R, h, G. A hollow sphere of mass, M, and radius, r, and wall thickness unknown,
has a moment of inertia, I = ΨMr2, (where Ψ) is a numerical pre-factor pertaining to the hollow sphere moment
of inertia). When the sphere is released from a height, h, it just clears the top of the loop of radius, R, without
losing contact with the track. r << R so that you may assume that the path of the sphere’s center of mass (CM)
coincides with the track. Find the algebraic value for Ψ. Check and show that you checked the units in your final
(boxed) answer.

For this problem you needed to consider both conservation of energy and the forces experienced by the sphere.
When the sphere is at the top of the ramp it has only potential energy,

Ei = Mgh. (1)

After the ball is released it goes down the ramp and up the loop. Many students intuited what they needed to
do, but technically you needed to consider the balance of forces as the sphere travels along the track. We are told
that the sphere “just clears the top of the loop.” We can intuit that a sphere traveling upside down along a loop
needs to be traveling sufficiently fast enough in order to complete the circuit without being pulled off the track by
gravity. If an object is just about to fall off it is just about to lose contact, which means that we can assume that
the normal force is negligible, i.e. N = 0. Our force balance equation then reads,

m~a =
mv2

R
=
∑

~F = mg + N = mg. (2)

Two things to note here is that when we express the total acceleration in terms of the centripetal acceleration, we
are dividing the velocity by the radius of motion and not by the radius of the object itself, i.e. R and not r. The
other is the sign of the forces. In this case we chose the direction of the centripetal acceleration to be positive, and in
our case both the normal force and the gravitational force are pointing in the same direction. Given our expression
for the forces in (2), we can now solve for the velocity of the sphere at the top of the loop, i.e. v =

√
gR. From this

we can return to the conservation of energy. At the top of the loop the sphere is both moving translationally and
rotationally and also possesses potential energy due to gravity, giving us

Ef = Mg(2R) +
1

2
Mv2 +

1

2
Iω2. (3)

Given that energy is conserved in this system (there are no non-conservative forces involved), we can match the
energies for the two different points on the track, Ei = Ef .

Mgh = 2MgR +
1

2
Mv2 +

1

2
Iω2 (4)

we can simplify our equation by rewriting ω = v/r and I = ΨMr2. This gives us.

Mgh = 2MgR +
1

2
Mv2 +

1

2
ΨMr2

v2

r2

which we can simplify further by considering v2 = gR,

Mgh = 2MgR +
1

2
MgR +

1

2
ΨMr2

gR

r2
, Mgh = 2MgR +

1

2
MgR +

1

2
ΨMgR,

gh = 2gR +
1

2
gR +

1

2
ΨgR, h = 2R +

1

2
R +

1

2
ΨR, 2h = 4R + R + ΨR.

which in the end gives us the final solution for the moment of inertia for the sphere in question,

Ψ = 2
h

R
− 5

The last thing that was asked of you was to check your answer using dimensional analysis and show your work. By

inspection we can see that Ψ is dimensionless , given that the only two variables have the same units and divide
one another.

[Ψ] = [ ]
[m]

[m]
− [ ] = [m m−1] = [ ]

1



MT2 – Physics 7A – Fall 2014 – Corsini 
Problem3 
 
Method 1 

	  
	  
Method 2 
 

	  
	  
Method 3 
 

	  
	  
	  
	  

	  



Physics 7A Lecture 3 Midterm 2       Problem #4 Solution 

 

First thing to realize is that the given volume density ���� � ����
�

	��  is a function of x only, which 

means density is uniform in y-z direction.  By symmetry of the hollow cylinder on the y-z plane, the 

center of mass should be somewhere along the x-axis.  So, ycm = zcm = 0 in the coordinates defined in the 

figure shown below. 

 

We can apply definition of center of mass to calculate the x component of the center of mass: 

Xcm = 


� ��	�� 

where M is the total mass of the cylinder, which we need to calculate by integration. 

 

Our strategy for integration is to divide the hollow cylinder into infinitely thin rings with thickness dx and 

cross-sectional area ����� � �
�� as shown in the figure, and then integrate over x from 0 to L.  By 

geometry,  

 �� � ����	�� � �� ��
�

	�� ����� � �
����	 

L 



Now the center of mass equation becomes two integrals, with ��	�� in the numerator, and � � ��� 

in the denominator. 
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After the constants are factored out and cancelled out, we are left with two very easy integrals to do. 

Xcm � � �&���
�
� �����
�

� �'
() 	|��

�&
+) 	|��

�	 +( , 

The center of mass of this hollow cylinder is �+( ,, 0,0� 

Notes: 

Some students tried to find the point where half of the mass falls on each side.  This approach is incorrect 

because the position of the center of mass is weighed by displacement, i.e. a mass at a distance x 

contribute only half as much to the center of mass as the same mass at a distance 2x.  It’s NOT the point 

where half of the weight goes on each side but rather the point where the torque due to gravity on both 

sides are equal. 

Besides calculating Xcm , an argument for ycm = zcm = 0 is expected in your answer.  Some students left this 

important part out. 
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NOTE: You did not have to present this level of detail in order to receive full credit for the problem, correct expressions
with valid reasoning sufficed. The purpose of this solution is to present to you as clearly as possible how to solve this problem,
not as a guide for your performance.

1 First part of the track: Rolling down

First we note that the mass M is only the mass of the middle part of the compound disc. The total mass can be found as
follows, using the assumption of uniform mass density ρ for the discs and given the radii R and R/2 of the large and small
discs respectively:

ρ =
M

πR2
(1)

Mtotal = M + 2ρπ(
R

2
)2 = M + 2

MπR2

4πR2
= M +

M

2
=

3M

2
(2)

Now we are also going to want the moment of inertia of the system, which we will calculate about the center of mass (i.e.
the center of all the discs:

Icm = IR−disc + 2IR/2−disc (3)

Now it is clear that IR−disc is just the usual 1
2MR2 but the IR/2−disc requires use of the mass of the small disc which we

found earlier to be M
4 , thus:

Icm =
1

2
MR2 + 2

1

2

M

4
(
R

2
)2 =

1

2
MR2 +

1

16
MR2 =

9

16
MR2 (4)

With these two things in mind we move on to solve the problem.

1.1 Part a.)

Here we are asked to find the velocity of the ball, which we will do using conservation of energy about the center of mass.
Initially we only have potential energy, while at the end we have both linear and rotational kinetic energy.

3

2
Mgh =

1

2
(
3

2
M)v2 +

1

2
Icmω

2 (5)

Now we can simplify this by noting that since the actual part of the disc rolling on the track has radius R/2, v = ωR/2
and ω = 2V/R. Thus we can simplify our previous expression plugging in Icm:

3

2
Mgh =

1

2
(
3

2
M)v2 +

1

2

9

16
MR2 4v2

R2
(6)

Simplifying:

3MgH = Mv2(
3

2
+

36

16
) = Mv2(

6 + 9

4
) =

15

4
Mv2 (7)

Solving for the velocity after it reaches the bottom of the ramp yields:

v =

√
4

5
gh (8)
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Figure 1: Free body diagram for sum of forces and torques

1.2 Part b.)

Now we are asked for the translational acceleration of the rolling disc, so in lieu of spending time analyzing forces and torques,
we use kinematics to drastically simplify our work. We know the system is at rest initially at the top of the ramp, and we’ve
found also the velocity v at the bottom of the ramp. Furthermore we know the distance ∆x that the system travels by simple
trigonometry (sin θ = h

∆x ). Using our hazy memory from kinematics:

v2
f = v2

i + 2a∆x→ v2 = 2at
h

sin θ
(9)

So we can readily solve this for at, the translational acceleration we are looking for. The result after plugging in v from part
a.) is:

at =
4
5gh
2h

sin θ

=
2

5
g sin θ (10)

1.3 Part c.)

Here we want the time ∆t it takes for the compound disc to reach the bottom of the ramp, and given quantities in a.) and
b.) we can make our lives quite easy with some basic kinematics:

v(t) = vi + at→ v(∆t) = at∆t (11)

So we arrive at our solution for ∆t by plugging in the results for v and at:

∆t =
v

at
=

√
4
5gh

2
5g sin θ

=

√
5h

g sin2 θ
(12)

2 Second part of the track: Slowing to a stop

For this part of the problem we have a few different approaches to solving for the 3 desired quantities (∆x′,b,and ∆t′ which
are not all sequential (i.e. we solve for e.) before d.) in section 2.2), we will go through them separately and you can choose
your favorite. You could have also used the ”instantaneous center” (contact point) rather than the center of mass.

2.1 Torque about center of mass

Here we make use of the fact that τnet = Iα to calculate the deceleration b of the disc and then we use kinematics to solve
for the other two quantities of interest, ∆x′ and ∆t′. Since we’re given a no slip condition, we know there is some static
friction force fs that acts on the contact point. We don’t know the value of this force, but we draw it acting to the left, but
it doesn’t really matter which direction we choose since the sign will be determined by equations later on.

Using the free body diagram we get two equations by summing forces and torques:

ma = Fnet →
3

2
Mb = f − fs (13)

Icmα = τnet →
9

16
MR2α = fR− fs

R

2
(14)

But we can eliminate α in favor of b by noting that αR2 = −b, so we get:

2



− 9

16
MR2 2b

R
= (f − fs

2
)R→ − 9

16
2Mb = f − fs

2
(15)

So we can use these two equations to solve for the two unknowns, b and fs, but since we don’t care about fs, we will only
solve for b:

3

2
Mb = f − fs (16)

9

8
Mb = −f +

fs
2

(17)

Use your favorite method for solving systems of equations to find that:

b = − 4f

15M
(18)

Now we use kinematics to find the time it takes the disc to stop and the distance it travels before it stops.

v(t) = vi + at→ v(∆t′) = 0 = v + b∆t′ (19)

So we can express ∆t′ in terms of known quantities:

∆t′ = −v
b

=

√
4
5gh

4f
15M

=
3M
√

5gh

2f
(20)

Now we have all the tools we need to find the distance the disc travels before it stops:

x(t) = xi + vit+
1

2
at2 → ∆x′ = v∆t′ +

1

2
b∆t′2 =

√
4

5
gh

3M
√

5gh

2f
− 1

2

4f

15M
(
3M
√

5gh

2f
)2 (21)

So simplifying the RHS, we find our expression for part d.):

∆x′ =
3Mgh

f
− 3Mgh

2f
=

3Mgh

2f
(22)

2.2 Work done about center of mass

From this perspective we calculate the work done by the external force f as it performs work as both a torque and as a linear
force. This must be equal to the initial energy of the system by conservation of energy. Note that in this context f does work
both as linear force and as torque since the disc has both linear and angular velocity. We note that the force f acts linearly
to accelerate the disc to the right, while as a torque it acts to slow the disc down. Thus the force f does positive work as a
linear force and negative work as a torque force. We find that the initial energy minus the work done to slow down the disc
plus the work done to accelerate the disc must be equal to 0 at the end when the disc stops.

3

2
Mgh− fR∆θ + f∆x′ = 0 (23)

Now the angle ∆θ that the force acts on corresponds to the angle swept out by the rotation of the disc, which since the
contact point is at R/2 is related to the linear distance traveled by the disc by: ∆θR/2 = ∆x′. So we find:

3

2
Mgh− fR2∆x′

R
+ f∆x′ = 0 (24)

3

2
Mgh− f∆x′ = 0 (25)

Which we solve to find for part d.):

∆x′ =
3Mgh

2f
(26)

We can now find parts e.) and f.) using basic kinematics:

v2
f = v2

0 + 2a∆x→ 0 = v2 + 2b∆x′ (27)

So we can solve for the deceleration b in part e.) in terms of known quantities:

3



b = − v2

2∆x′
= −

4
5gh

2 3Mgh
2f

= − 4f

15M
(28)

Finally, we can find the time ∆t′ for part f.) from the bottom of the ramp until the disc stops by using the equation for
velocity (we know velocity is 0 at time ∆t′:

v(t) = vi + at→ v(∆t′) = 0 = v + b∆t′ (29)

So we can solve for ∆t′ in terms of known variables:

∆t′ = −v
b

=

√
4
5gh

4f
15M

=
3M
√

5gh

2f
(30)

And of course physics is consistent, the two methods discussed in sections 2.1 and 2.2 are equivalent.
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