
MIDTERM 2 SOLUTIONS
Physics 8B - Lecture 2, E. Lebow

April 16, 2015

1. i. TRUE. This is due to the absence of magnetic monopoles, and also follows from the
magnetic Gauss’s law.

ii. FALSE. The intensity is proportional to the square of Ep.

iii. FALSE. Nearsightedness means converging the light too much, so one would need a
diverging lens.

iv. FALSE. The frequency does not change.

v. FALSE. Ampère’s law is true more generally.

vi. c. The magnetic force is perpendicular to the velocity.

vii. b. The EMF is determined entirely by the rate of change of the magnetic flux and
hence the same for both. The current in copper is greater because it is a much better
conductor (i.e. has much lower resistance) than wood.

viii. d. The criterion is the light will be completely blocked if and only if there are two
consecutive polarizers whose transmission axes are perpendicular.

2. a. By the right-hand rule, the field line through P is as follows. (A more rigorous proof
of the direction of the ~B field would involve the Biot-Savart law, which is however not
required.)

b. This is a steady current distribution, so Ampére’s law holds without the displacement
current term. The direction of the magnetic field is as depicted in the previous question.
By rotational symmetry, the magnitude only depends on the distance from the wire.
This motivates us to choose the Ampèrian loop shown below, where the magnitude of
the magnetic field is a constant (which we denote by B1(P )) along the loop and the
direction is everywhere tangent to the loop.

Ampère’s law dictates that
B1(P )2πd = µ0I1, (1)
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whence it follows

B1(P ) =
µ0I1

2πd
. (2)

The magnetic field at point P is pointing into the page , by previous remarks.

c. The magnetic field due to Wire 1 on Wire 2 is pointing out of the page, with its
magnitude being

B12 =
µ0I1

2πd
, (3)

according to previous questions. The force per unit length on Wire 2 is

f = I2B12 =
µ0I1I2

2πd
. (4)

By the right-hand rule, this force points to the left .

d. Replacing I1 by − I1
2 and d by 2d, the magnetic field due to Wire 2 at point P is

B2(P ) =
−µ0I1/2

2π2d
= −µ0I1

8πd
, (5)

with pointing into the page being the positive direction. Thus the total magnetic field
at point P due to both wires is

B(P ) = B1(P ) +B2(P ) =
µ0I1

2πd
− µ0I1

8πd
=

3µ0I1

8πd
(6)

with pointing into the page being the positive direction. Vectorially,

~B(P ) = −3µ0I1

8πd
ẑ. (7)

The first particle has a velocity parallel (more precisely, antiparallel) to the magnetic

field, and hence experiences no force .

e. The velocity of the second particle is ~w = wŷ, so the magnetic force it experiences is

~F2 = q ~w × ~B(P )

= qw

(
−3µ0I1

8πd

)
ŷ × ẑ

= −3µ0I1qw

8πd
x̂. (8)

Instead of the vectorial manipulations, one may also first observe that ~w is perpendic-
ular to ~B(P ), compute the magnitude of the force F2 = qwB(P ) = 3µ0I1qw

8πd , and then
use the right-hand rule to deduce that the force is in the −x direction.

3. a. The higher the ratio of water refractive index to air refractive index, the more easily
total internal reflection will occur. Given the information in the problem, it must be
the blue light that was totally reflected.

b. The critical angle for the blue light is determined by

nblue sin θc,blue = nair sin
π

2
. (9)

Since nair = 1, sin π
2 = 1, we have

θc,blue = arcsin
1

nblue
. (10)
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Similarly,

θc,red = arcsin
1

nred
. (11)

Note that θc,blue < θc,red, consistent with the conclusion in part (a). Thus the interval
θ lies in is [

arcsin
1

nblue
, arcsin

1

nred

)
. (12)

That is,

arcsin
1

nblue
≤ θ < arcsin

1

nred
. (13)

It is acceptable to replace ≤ by < or vice versa in this equation, or correspondingly “[”
by “(” and/or “)” by “]” in the previous one.

4. a. That the image is upright implies that the magnification M is positive. Now that
M = − s′

s and that s = 30cm is positive, we must have s′ < 0. Thus the image is

virtual .

The same conclusion can also be drawn by considering the light ray that hits the center
of the mirror: one must trace the reflected ray backwards to get an upright image, which
means the image is behind the mirror. We know that an image behind the mirror is
always virtual .

In conclusion, the image is behind the mirror, that is, on the opposite side of the
mirror than the candle.

b. The magnification

M =
2cm

6cm
=

1

3
. (14)

Since M = − s′

s , we have

− s′

s
=

1

3
. (15)

Thus the image distance

s′ = −s
3

= −30cm

3
= −10cm. (16)

What the problem asked for was the “distance between the image and the mirror,”
which is the absolute value of what we just found:

|s′| = 10cm. (17)

c. By the lens/mirror equation,
1

s
+

1

s′
=

1

f
. (18)

Plugging in s = 30cm and s′ = −10cm, we compute

f =
ss′

s+ s′
= −15cm. (19)

The negative sign of f implies that the mirror is convex , i.e. diverging .
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d.

5. a. The magnetic field is perpendicular to both ~E and the direction of propagation. Fur-
thermore, ~E, ~B, and the direction of propagation form a right-hand system. We also
know that ~B has the same phase as ~E, namely kx− ωt. As such,

~B(x, t) = B0 sin(kx− ωt)ẑ, (20)

or

~B(x, t) =
E0

c
sin(kx− ωt)ẑ. (21)

b. There is no current in the loop. This is because Bz(x, t) varies between positive and
negative values as a function of x. If D is equal to an integer multiple of λ, then the total
magnetic flux ΦB(t) is precisely zero due to the cancellation between the contributions
from positive and negative Bz(x, t), at any given instant of time t. Since E(t) = −dΦB

dt ,

the EMF E(t) = 0 for all t. By Ohm’s law, the induced current I(t) = E(t)
R is also zero

for all t.

c. If D is not equal to an integer multiple of λ, then the cancellation mentioned above
will not occur, and ΦB(t) will oscillate in a sinusoidal fashion. E(t) = −dΦB

dt and hence

the induced current I(t) = E(t)
R , as a result, will also oscillate in a sinusoidal fashion,

as shown below.

d. To maximize the amplitude of I(t), we need to maximize the amplitude of E(t), since

I(t) = E(t)
R . To maximize the amplitude of E(t), we should maximize the amplitude

of ΦB(t). (The reason is as follows. By Faraday’s law, E(t) = −dΦB(t)
dt . Now if

ΦB(t) = Φmax sin(ωt + φ), then E(t) = −ωΦmax cos(ωt + φ). Thus the amplitude of
E(t) is |ωΦmax|. Since ω is fixed, to maximize the amplitude of E(t) we should maximize
|Φmax|, i.e. the amplitude of ΦB(t).)

One obvious choice of D for which the amplitude of ΦB(t) is maximized is λ
2 , because

in that case, at certain t, the magnetic field inside the loop will point in the same
direction everywhere and thereby maximize the absolute value of the flux. [This is in
contrast to the case considered in (a), for example, where at any t, there will be points
within the loop where ~B points one way and points where ~B points the other way, and
the net flux is always zero.]
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In fact, the amplitude of ΦB is also maximized for D = 3λ
2 . This is because compared

to D = λ
2 , we are encompassing precisely one more cycle, which does not affect the

total flux, according to part (a). Along this line of thinking, we can go on to conclude
that for

D =
λ

2
,
3λ

2
,
5λ

2
, . . . (22)

the amplitude of ΦB, and hence the amplitude of the induced current I(t), will be
maximized.

e. We choose D = λ
2 . The total magnetic flux, with +z as the positive direction, is

ΦB(t) =

ˆ λ/2

0
B0 sin(kx− ωt)Ldx

= B0L

ˆ λ/2

0
sin(kx− ωt)dx

= −B0L

k
cos(kx− ωt)

∣∣∣λ/2
0

=
B0L

k
[cos(−ωt)− cos(kλ/2− ωt)] . (23)

Since k = 2π
λ , kλ/2 = π, and so we have

ΦB(t) =
B0L

k
[cos(−ωt)− cos(π − ωt)]

=
B0L

k
[cos(ωt) + cos(ωt)]

=
2B0L

k
cos(ωt). (24)

By Faraday’s law,

E(t) = −dΦB

dt
=

2ωB0L

k
sinωt. (25)

By Ohm’s law,

I(t) =
E(t)

R

=
2ωB0L

kR
sinωt (26)

=
2cB0L

R
sinωt (27)

=
2E0L

R
sinωt. (28)

Any of the three boxed equations is acceptable.

Alternative solutions to (b)-(e):

a. Same as before.
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b. The key observation is that the electric field induced by the magnetic field is nothing
but the original electric field ~E(x, t) = E0 sin(kx−ωt)ŷ. The EMF E(t) and hence the

induced current I(t) = E(t)
R in the loop are determined entirely by ~E(x, t) = E0 sin(kx−

ωt)ŷ. More specifically,
E(t) = Ey(D, t)L− Ey(0, t)L, (29)

with the counterclockwise direction defined to be the positive direction. Now if D is
equal to an integer multiple of λ, then Ey(D, t) is equal to Ey(0, t) at all times, and so

E(t) and hence I(t) must vanish .

c. IfD is not equal to an integer multiple of λ, then Ey(D, t) is not always equal to Ey(0, t).
Their difference E(t) = Ey(D, t)L − Ey(0, t)L oscillates in a sinusoidal fashion. As a

result, the current I(t) = E(t)
R also oscillates in a sinusoidal fashion, as shown.

d. To maximize the amplitude of the current, we need to maximize E , which is achieved
when ~E(D, t) is equal to ~E(0, t) in magnitude but opposite in direction at all times.
This is indeed possible, when

D =
λ

2
,
3λ

2
,
5λ

2
, . . . (30)

e. We take D = λ
2 . By discussions in (b),

E(t) = Ey(λ, t)L− Ey(0, t)L
= E0L sin(kλ/2− ωt)− E0L sin(−ωt)
= 2E0L sin(ωt), (31)

where we have used k = 2π
λ and so kλ/2 = π. Then by Ohm’s law,

I(t) =
E(t)

R

=
2E0L

R
sinωt, (32)

with the counterclockwise direction defined to be the positive direction. Equivalently,

I(t) =
2ωB0L

kR
sinωt (33)

=
2cB0L

R
sinωt. (34)
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