Problem 1

a.) The relevant equation for conductive heat transfer is:

$$
\frac{\Delta Q}{\Delta t}=k A \frac{\Delta T}{\Delta x}
$$

At the junction, given that there are no fluctuations in time, we have:

$$
\left(\frac{\Delta Q}{\Delta t}\right)_{\text {slab } 1}=\left(\frac{\Delta Q}{\Delta t}\right)_{\text {slab } 22}
$$

so that:

$$
k_{1} A \frac{T_{H}-T_{J}}{L_{1}}=k_{2} A \frac{T_{J}-T_{C}}{L_{2}}
$$

Solving for T_{J}, we have:

$$
T_{J}=\frac{T_{H} k_{1} / L_{1}+T_{C} k_{2} / L_{2}}{k_{1} / L_{1}+k_{2} / L_{2}}
$$

b.) The rate of heat transfer into the ice is:

$$
\frac{\Delta Q}{\Delta t}=k_{2} A \frac{T_{J}-T_{C}}{L_{2}}
$$

The amount of heat required to melt the ice is:

$$
\Delta Q=M L_{F}
$$

Therefore the time required to melt it is:

$$
\Delta t=\frac{\Delta Q L_{2}}{k_{2} A\left(T_{J}-T_{C}\right)}=\frac{M L_{F} L_{2}}{k_{2} A\left(\frac{T_{H} k_{1} / L_{1}+T_{C} k_{2} / L_{2}}{k_{1} / L_{1}+k_{2} / L_{2}}-T_{C}\right)}
$$

Problem 2

We remember Archimedes' principle (i.e. buoyancy = weight of displaced fluid). This gives us the relations between the initial densities:

$$
\rho_{\text {sphere }} \cdot V_{\text {sphere }}=\rho_{\text {liquid }} \cdot \frac{1}{2} V_{\text {sphere }} \Rightarrow \rho_{\text {sphere }}=\frac{1}{2} \rho_{\text {liquid }}
$$

At neutral buoyancy we have:

$$
\rho_{\text {sphere }}^{\prime}=\rho_{\text {liquid }}^{\prime}
$$

Therefore we have:

$$
\frac{m_{\text {sphere }}}{V_{\text {sphere }}+\Delta V_{\text {sphere }}}=\frac{m_{\text {liquid }}}{V_{\text {liquid }}+\Delta V_{\text {liquid }}}
$$

Plugging in the initial density values:

$$
2\left(1+\Delta V_{\text {sphere }} / V_{\text {sphere }}\right)=1+\Delta V_{\text {liquid }} / V_{\text {liquid }}
$$

Using the fact that $\Delta V / V=\beta \Delta T$:

$$
\beta_{L}=2 \beta_{S}+\frac{1}{\Delta T}
$$

Problem 3

The heat lost by the skewer has to equal the heat gained by the water, so:

$$
\begin{equation*}
M_{S} c_{S}\left(T_{H}-T_{F}\right)=M_{W} c_{W}\left(T_{F}-T_{W}\right) \tag{1}
\end{equation*}
$$

which gives

$$
\begin{equation*}
T_{F}=\frac{M_{S} c_{S} T_{H}+M_{W} c_{W} T_{W}}{M_{S} c_{S}+M_{W} c_{W}} \tag{2}
\end{equation*}
$$

Using $d Q=M_{S} c_{S} d T$, the entropy change of the skewer is

$$
\begin{equation*}
\Delta S_{S}=\int \frac{d Q}{T}=\int \frac{M_{S} c_{S} d T}{T}=M_{S} c_{S} \ln \frac{T_{F}}{T_{S}}<0 \tag{3}
\end{equation*}
$$

In exactly the same way we get for the water:

$$
\begin{equation*}
\Delta S_{W}=M_{W} c_{W} \ln \frac{T_{F}}{T_{W}}>0 \tag{4}
\end{equation*}
$$

The total entropy change is then

$$
\begin{equation*}
\Delta S_{T O T}=M_{S} c_{S} \ln \frac{T_{F}}{T_{S}}+M_{W} c_{W} \ln \frac{T_{F}}{T_{W}} \tag{5}
\end{equation*}
$$

which we know to be positive by the Second Law of Thermodynamics.

Problem 4

- For $A B, Q=0$ because the process is adiabatic. Work $W_{A B}=\int p d V$ is positive.
- Using $Q=\Delta E_{\text {int }}+W$, for $B C, \Delta E_{\text {int }}=\frac{d}{2} N k_{B} \Delta T=0$ because it is isothermal, and $W<0$ because the gas is being compressed, so $Q<0$ and heat is leaving the system.
- For $C A, W=0$ (the volume is constant), and temperature is increasing, so $Q>0$ and heat is entering the system.

Point A has the highest temperature, and point B has the lowest. This can be seen by plotting isotherms, and remembering that for an adiabat $p \propto \frac{1}{V^{\gamma}}$ which falls more quickly than an isotherm, so $T_{A}>T_{B}$.

Carnot efficiency is:

$$
\begin{equation*}
e_{C}=1-\frac{T_{L}}{T_{H}} . \tag{6}
\end{equation*}
$$

T_{H} is just $T_{A}=\frac{P_{A} V_{A}}{n R}$. Note that $T_{L}=T_{B}=T_{C}$, so since $A B$ is adiabatic we have:

$$
\begin{equation*}
P_{A} V_{A}^{\gamma}=P_{B}\left(2 V_{A}\right)^{\gamma} \Longrightarrow P_{B}=\frac{P_{A}}{2^{\gamma}} \tag{7}
\end{equation*}
$$

Hence $T_{B}=\frac{P_{B} V_{B}}{n R}=\frac{P_{A} V_{A}}{2^{\gamma-1} n R}$ which gives:

$$
\begin{equation*}
e_{C}=1-\frac{1}{2^{\gamma-1}}=1-2^{1-\gamma} \tag{8}
\end{equation*}
$$

The only heat flow in is along $C A$ and is given by $Q_{I N}={ }_{n} C_{V} \Delta T=$ $\frac{d}{2} n R\left(T_{A}-T_{C}\right)=\frac{1}{\gamma-1} n R T_{A}\left(1-2^{1-\gamma}\right)=\frac{1}{\gamma-1} P_{A} V_{A}\left(1-2^{1-\gamma}\right)$ where we have used the relation between d and γ on the formula sheet. The work done during $A B$ is:

$$
\begin{equation*}
W_{A B}=-\Delta E_{i n t}=-\frac{d}{2} n R\left(T_{B}-T_{A}\right)=\frac{1}{\gamma-1} P_{A} V_{A}\left(1-2^{1-\gamma}\right) \tag{9}
\end{equation*}
$$

The work done during the isothermal compression $B C$ is:

$$
\begin{equation*}
W_{B C}=n R T_{C} \ln \left(\frac{V_{B}}{V_{A}}\right)=-2^{1-\gamma} P_{A} V_{A} \ln 2 . \tag{10}
\end{equation*}
$$

Finally then the efficiency is:

$$
\begin{equation*}
e=\frac{W_{N E T}}{Q_{I N}}=\frac{P_{A} V_{A}\left(\frac{1}{\gamma-1}\left(1-2^{1-\gamma}\right)-2^{1-\gamma} \ln 2\right)}{P_{A} V_{A} \frac{1}{\gamma-1}\left(1-2^{1-\gamma}\right)} \tag{11}
\end{equation*}
$$

which can be written

$$
\begin{equation*}
e=1-\frac{2^{1-\gamma}(\gamma-1) \ln 2}{\left(1-2^{1-\gamma}\right)} \tag{12}
\end{equation*}
$$

a)

The electric field on the axis is

$$
\vec{E}(x)=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{Q_{1}}{x^{2}}-\frac{Q_{2}}{(x-a)^{2}}\right) \hat{x}
$$

Setting this equal to zero gives

$$
\left(Q_{1}-Q_{2}\right) x^{2}-2 Q_{1} a x+Q_{1} a^{2}=0
$$

The solution to this is

$$
P_{ \pm}=\frac{2 a Q_{1} \pm \sqrt{4 a^{2} Q_{1}^{2}-4\left(Q_{1}-Q_{2}\right) Q_{1} a^{2}}}{2\left(Q_{1}-Q_{2}\right)}=a \frac{Q_{1} \pm \sqrt{Q_{1} Q_{2}}}{Q_{1}-Q_{2}}
$$

We take the solution with the + sign as we want an answer >0.

$$
P=a \frac{\sqrt{Q_{1}}}{\sqrt{Q_{1}}-\sqrt{Q_{2}}}
$$

b)

The electric field of a point charge has no zeros so the force of a point charge on another cannot be zero. The force of Q_{3} on Q_{2} will be

$$
\vec{F}_{32}=\frac{Q_{2} Q_{3}}{4 \pi \epsilon_{0} a^{2}}\left(1-\frac{\sqrt{Q_{1}}}{\sqrt{Q_{1}}-\sqrt{Q_{2}}}\right)^{-2} \hat{x}=\frac{Q_{2} Q_{3}}{4 \pi \epsilon_{0} a^{2}}\left(1-\sqrt{\frac{Q_{1}}{Q_{2}}}\right)^{2} \hat{x}
$$

c)

The force of Q_{3} on Q_{1} will be

$$
\vec{F}_{31}=\frac{Q_{1} Q_{3}}{4 \pi \epsilon_{0} a^{2}}\left(\frac{\sqrt{Q_{1}}}{\sqrt{Q_{1}}-\sqrt{Q_{2}}}\right)^{-2}(-\hat{x})=-\frac{Q_{1} Q_{3}}{4 \pi \epsilon_{0} a^{2}}\left(1-\sqrt{\frac{Q_{2}}{Q_{1}}}\right)^{2} \hat{x}
$$

d)

We need \vec{F}_{21} to be equal in magnitude to the answer in part c (or equivalently \vec{F}_{12} to be equal in magnitude to the answer in part b). This is satisfied when

$$
\frac{Q_{1}}{4 \pi \epsilon_{0}} \frac{Q_{2}}{a^{2}}=\frac{Q_{1}}{4 \pi \epsilon_{0}} \frac{Q_{3}}{P^{2}}
$$

This means

$$
Q_{2}=\frac{Q_{3}}{Q_{1}}\left(\sqrt{Q_{1}}-\sqrt{Q_{2}}\right)^{2}
$$

So we need

$$
Q_{3}=\frac{Q_{2} Q_{1}}{\left(\sqrt{Q_{1}}-\sqrt{Q_{2}}\right)^{2}}
$$

