In each problem express your answer in terms of known variables listed for that problem; not all variables need to be used Show your work, box your answers, check units.

Problem 1(total: 20 points)

The known variables are $M, L_{F} T_{H} T_{C} K_{1} K_{2} L_{1} L_{2} A$
Consider a heat source at temperature T_{H} and a mass of ice M at temperature $T_{\mathrm{C}}=0 \mathrm{C}$. Heat is conducted from the heat source to the ice through two heat conducting rods with thermal coefficients K_{1} and K_{2}, of lengths $L_{1} L_{2}$, and of cross section area \boldsymbol{A} as shown. The latent heat coefficient for the ice is L_{F}
The system is insulated meaning that the only heat flow is from the heat source to the ice.

- What is the temperature at the junction of the two rods
- What is the time \boldsymbol{t} needed for the ice to completely melt into water at 0 O ?

Problem 2 (total: 20 points) The known variables are: $R \beta_{\mathrm{s}} \rho_{\mathrm{s}} T \Delta T$
Consider a sphere of radius R and density ρ_{S} and of coefficient of volume expansion for the sphere is β_{s}. At temperature \boldsymbol{T} the sphere floats in a liquid; it is half submerged. At temperature $\boldsymbol{T}+\Delta T$ the sphere has neutral buoyancy in the same liquid (on the verge of sinking).

- What is the coefficient of volume expansion $\boldsymbol{\beta}_{\mathrm{L}}$ for the liquid?

Problem 3 (total: 20 points) The known variables are $T_{\mathrm{c}}, T_{\mathrm{H}} M_{\mathrm{w}} c_{\mathrm{w}} M_{\mathrm{S}} \mathrm{c}_{\mathrm{s}}$
At a camp fire high in the sierra you are roasting marshmallows using a metal skewer of mass M_{s} and of specific heat $\boldsymbol{c}_{\mathbf{s}}$. The skewer is at temperature T_{H}. You dip the skewer in a pan filled with a mass M_{w} of water (specific heat c_{w}) at temperature T_{c} until the skewer and the water reach thermal equilibrium (ignore the water container in this problem and assume there is no water evaporation).

- What is the thermal equilibrium temperature, $\boldsymbol{T}_{\mathrm{F}}$?
- What is the change in entropy of the skewer $\Delta S_{\text {s }}$
- What is the change in entropy of the water ΔS_{w}.
- What is the total change in entropy $\Delta S_{\text {TOT }}$ for the system (water +skewer).
- Quoting a thermodynamic law, explain and deduce the sign of $\Delta S_{\text {тот }}$

Problem 4 (total: 20 points) The known variables are $V_{A} V_{B} P_{A} n \gamma\left(\gamma=C_{P} / C_{V}\right) R$ (ideal gas constant)
All final answers must be in terms of these variables.
Recall that $\mathrm{W}_{\text {ADIABATIC }}=\mathrm{P}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}{ }^{\gamma} * 1 /(1-\gamma) *\left[\mathrm{~V}^{1-\gamma}-\mathrm{V}_{\mathrm{i}}^{1-\gamma}\right]=1 /(1-\gamma)^{*}[(\mathrm{PV}$-PiVi)
Consider a closed cycle A-B-C (in that order) for a heat engine operating with n moles of an ideal gas.
$\mathrm{A}-\mathrm{B}$: adiabatic expansion starting at volume V_{A} and pressure P_{A} and ending at volume $V_{\mathrm{B}}=2 V_{\mathrm{A}}$
$B-C$: isothermal expansion from volume V_{B} back to volume V_{A}
C-A: isochoric with pressure increasing back to P_{A}

- Draw a PV diagram showing all three heat processes; clearly label the axes with $V_{A} V_{B} P_{A} P_{B}$
- For each segment $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$, describe whether there is heat flowing in the system, out of the system, or no heat flow
- For each segment $A B, B C, C A$, describe whether there is work done by the system (positive), on the system (negative), or no work done.
- Find the points in the points in the closed cycle with the highest and lowest temperatures T_{H} and T_{C}
- Find the Carnot efficiency \mathbf{e}_{C} of a Carnot engine working with heat sources at T_{H} and T_{C}
- Find the efficiency of the heat engine \mathbf{e}

Problem 5 (total: 20 points): The known variables are: $Q_{1} Q_{2} Q_{3} \boldsymbol{a k}\left[\boldsymbol{k}=1 /\left(4 \pi \varepsilon_{0}\right)\right.$ is the proportionality constant in Coulomb's law] Two charges have opposite signs. $+Q_{1}$ is at the origin. and $-Q_{2}$ is at position $a>0$ on the x-axis ($Q_{1}>Q_{2}$ and are both positive quantities).

- What is the position $\mathbf{P}>0$ on the x -axis where the electric field is zero?

Now consider a third charge \boldsymbol{Q}_{3} positioned at \boldsymbol{P}; since the electric field at \boldsymbol{P} is zero and since the electric field is the force per unit charge, the net force by Q_{1} and Q_{2} acting on charge Q_{3} will also be zero.

- Is the force exerted by Q_{3} on Q_{2} also zero? If yes state why if not what is that force?
- Is the force exerted by Q_{3} on Q_{1} also zero? If yes state why if not what is that force?
- Hard \rightarrow [10 pts for that part]: What additional conditions on Q_{1}, Q_{2}, Q_{3} are necessary so that the force exerted by any two charges on the third one is zero?

