
EE105 Spring 2015 D.J. Allstot

1. Circuit Analysis (14 points) Find the current in each element. Show each step in your solution to receive full credit. Two copies of the same schematic are shown in case you need more than one.

Element	Current (A)
I_{R1}	7 - Vy = -1.26A
I_{R2}	$\frac{12-Vx}{4} = 2.42 \text{ A}$
I_{R3}	$\frac{V \times -V y}{e} = -0.74 \text{ Å}$
I_{R4}	$\frac{-Vx^{\circ}}{2} = -1.16$ Å
$I_{V\mathrm{A}}$	$= IR_1$
$I_{\mathcal{V}\mathcal{B}}$	$= IR \varphi$
I10	2 A

EE105 Spring 2015 D.J. Allstot

2. MOSFET DC Bias (18 points). For the circuit below find the DC values of I_G , I_D , V_G , V_S , V_D and V_{out} . Assume $V_{TN} = 1.0$ V and $K_n = 40 \,\mu A/V^2$.

	R_{2} $V_{cc} = 10$ I_{D}
	$V_{\rm out}$
3	$\begin{array}{c} & & I_{G} \\ \hline R_{1} \\ \hline H \\ \end{array} \\ \hline H \\ \hline H$
	$I_{S} \stackrel{R_{3}}{\checkmark} 100 K$

Parameter	Value (w / units)
IG	0
I_D	12.24A
V _G	3 V
V_S	1.22V
V_D	5.12V
Vout	5.12V

Assume in saturation:

$$I_{D} = I_{S} = \frac{k_{n}}{2} \left(\sqrt{a_{2}} - \sqrt{t_{n}} \right)^{2}$$

$$= 20 \cdot \left[e^{-6} \left(3 - \sqrt{s} - \sqrt{t_{n}} \right)^{2} \right]$$

$$I_{S} \cdot \left[e^{-6} + \sqrt{s} \right]$$

$$V_{S} = 2 \left(4 - 4\sqrt{s} + \sqrt{s}^{2} \right)$$

$$V_{S} = 2 \left(4 - 4\sqrt{s} + \sqrt{s}^{2} \right)$$

$$2\sqrt{s^{2}} - 9\sqrt{s} + 8 = 0$$

$$\sqrt{s} = 9 \pm \sqrt{17} = \begin{cases} 1.22 \text{ V} \\ 3.28 \text{ V} \end{cases}$$

$$\sqrt{s} = 1.22 \text{ V}$$

$$I_{S} = 12.2 \text{ V}$$

$$V_{G} = 1.22 \text{ V}$$

$$V_{D} = 10 \text{ V} - 400 \text{ K} \cdot 12.2 \text{ M} \text{ A}$$

$$= 5.12 \text{ V}$$

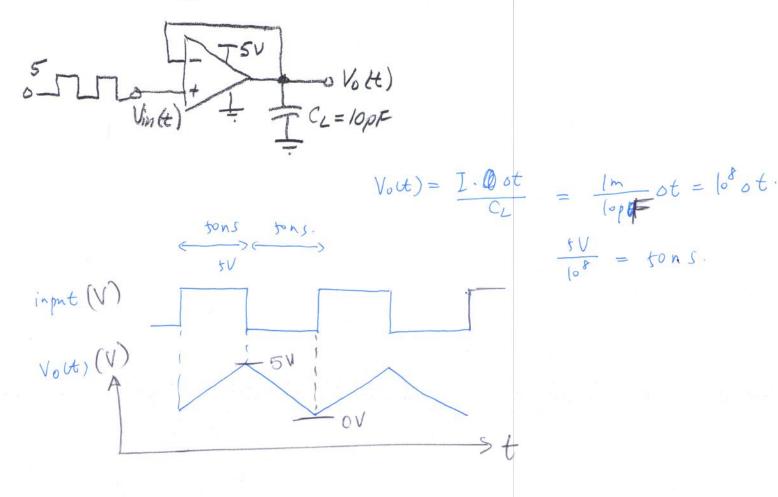
$$V_{D} = 3.9 \text{ V}$$

$$V_{D} = 3.9 \text{ V}$$

$$V_{D} = 10 \text{ V} - 400 \text{ K} \cdot 12.2 \text{ M} \text{ A}$$

$$= 5.12 \text{ V}$$

$$V_{D} = 3.9 \text{ V}$$


$$V_{D} = 10 \text{ V} - 400 \text{ K} \cdot 12.2 \text{ M} \text{ A}$$

$$= 5.12 \text{ V}$$

$$V_{D} = 3.9 \text{ V}$$

EE105 Spring 2015 D.J. Allstot

3. Time-Domain Analysis [15 points]. An opamp with rail-to-rail output voltage swing is connected to a 5 V supply. The opamp can supply or sink a maximum of 1 mA of current at its output terminal. It is driving a 10 pF load capacitor as shown. The input is driven with an ideal square wave, V_{in}(t), that goes from 0 to 5V at a frequency of 10MHz. Plot the output voltage waveform, V_o(t).

Frequency, response

$$A(s) = \frac{A_{0}}{(1+s_{0})(1+s_{0})}$$

$$(U_{1} - V_{2})A(s) = V_{0}$$

$$\beta = \frac{R_{1}}{R_{1} + R_{2}}$$

$$\beta = \frac{R_{1}}{R_{1} + R_{2}}$$

$$\frac{V_{0}}{V_{1}} = \frac{A_{0}\beta}{(1+s_{0})(1+s_{0})}$$
Since DC gain = $h\beta$ = $\frac{A_{0}\beta}{(1+s_{0})(1+s_{0})}$
Since DC gain = $h\beta$ = $\frac{A_{0}\beta}{(1+s_{0})(1+s_{0})}$

$$M_{u} \rightarrow Af$$
 the unity gain frequency is $(1+\theta\beta)h\beta_{1} \gg h\beta_{1}$
the phase introduced by first pole $(\omega_{1}) \approx g^{0}$

$$- \tan^{-1}(\frac{\omega_{2}u}{\omega_{2}}) = -100^{\circ}$$

$$(W_{u} = W_{2} \tan 10^{\circ})$$

Midterm_Solutions Page 1

Friday, February 27, 2015 1:04 PM

The magnitude of loop gain = 1 (u)

$$\left(\frac{A \circ \beta}{\left(1 + j \frac{\omega_u}{\omega_{P_l}}\right) \left(1 + j \frac{\omega_u}{\omega_{P_2}}\right)} = 1$$
Wa

$$\frac{10^5 (\beta)}{\omega_{p_1}^{2} \tan 10^{\circ} \left| \left(1 + \beta \tan 10^{\circ}\right) \right|} = 1$$

$$\beta = \frac{\omega_{p2} \tan 10^{\circ}}{10^{5} \omega_{p1}} | 1 + j \tan 10^{\circ} |$$

$$\frac{R_{1}}{R_{1} + R_{2}} = \beta$$

$$\beta = \frac{4\pi \times 10^{7}}{211 \times 100 \times 10^{5}} \cdot \tan 10^{\circ} | 1 + j \tan 10^{\circ} |$$

$$\frac{R_{2}}{R_{1} + R_{1}} = 1 - \beta$$

$$\beta = 2 \tan 10^{\circ} || + j \tan 10^{\circ} |$$

$$R_{1} + R_{1}$$

$$R_{1} + R_{1}$$

$$\frac{R_{2}}{R_{1}} = \frac{(1 - \beta)}{\beta}$$

$$R_{2} = \frac{(1 - \beta)R_{1}}{\beta}$$

$$R_{2} = \frac{(1 - \beta)R_{1}}{\beta}$$

 $R_2 = 1.79$ KOhm

Friday, February 27, 2015 1:10 PM

$$\begin{array}{ll} (b) \\ (b) \\ (b) \\ (b) \\ (c) \\ (c)$$

$$= \frac{A_{o}}{(A_{o}\beta) + (l + \frac{s}{w_{p_{l}}})(l + \frac{s}{w_{p_{2}}})}$$

$$w_{p_{1}}w_{p_{2}}$$

-

δ

$$\frac{A_{0} \omega_{p_{1}} \omega_{p_{2}}}{(A_{0}\beta) \omega_{p_{1}} \omega_{p_{2}} + (S + \omega_{p_{1}})(S + \omega_{p_{2}})}$$

$$\begin{split} \omega_{p_1} &= 2\pi \times 10^2 \text{ rad/s} \\ \omega_{p_2} &= 4\pi \times 10^7 \text{ rad/s} \\ &= \frac{A_0 \, \omega_{p_1} \, \omega_{p_2}}{s^2 + s \left(\omega_{p_1} + \omega_{p_2}\right) + \omega_{p_1} \omega_{p_2} \left(1 + A_0\beta\right)} & A_0 = 10^5 \\ \beta &= \frac{R_1}{R_1 + R_2} \\ H(s) &= \frac{A_0 \, \omega_{p_1} \, \omega_{p_2}}{\left(s + a\right)\left(s + b\right)} & a = 1.416 \times 10^7 \text{ rad/sec} \\ b &= 11.1 \, \times 10^7 \text{ rad/sec} \end{split}$$

$$V_{o}(s) = \frac{A_{o} \omega_{p_{1}} \omega_{p_{2}}}{s(s+a)(s+b)} = \frac{K_{1}}{s} + \frac{K_{2}}{s+a} + \frac{K_{3}}{s+b}$$

$$A_{o} \omega_{p_{1}} \omega_{p_{2}} = K_{i}(s+a)(s+b) + K_{3}s(s+b) + K_{3}s(s+a)$$

$$A_{o} \omega_{p_{1}} \omega_{p_{2}} = K_{i}(s+a)(s+b) + K_{3}s(s+b) + K_{3}s(s+a)$$

$$K_{i} = \frac{A_{o} \omega_{p_{1}} \omega_{p_{2}}}{a \cdot b} \qquad K_{2} = -A_{o} \omega_{p_{1}} \omega_{p_{2}}} \qquad K_{3} = -A_{o} \omega_{p_{1}} \omega_{p_{2}}}$$

Cr(b-a)

2

6)

b(a-

ab

Friday, February 27, 2015 1:53 PM