1. Circuit Analysis (14 points) Find the current in each element. Show each step in your solution to receive full credit. Two copies of the same schematic are shown in case you need more than one.

2. MOSFET DC Bias ($\mathbf{1 8}$ points). For the circuit below find the DC values of $I_{\mathrm{G}}, I_{\mathrm{D}}, V_{\mathrm{G}}$,
$V_{\mathrm{S}}, V_{\mathrm{D}}$ and $V_{\text {out. }}$ Assume $V_{\mathrm{TN}}=1.0 \mathrm{~V}$ and $K_{\mathrm{n}}=40 \mu \mathrm{~A} / \mathrm{V}^{2}$.

$$
=5.12 \mathrm{~V} \quad V_{D S}=3.9 \mathrm{~V}
$$

0

$$
>V_{t s}-V_{t h} .
$$

$I_{D} \quad 12.2 \mathrm{hA}$
V_{G}
3 V
V_{s}
1.22 V
V_{D}
$V_{\text {out }}$
5.12 V
5.12 V

$$
\begin{aligned}
& \begin{array}{l}
\text { Assume in saturation: } \\
I_{D}=I_{S}=\frac{k_{n}}{2}\left(V_{G} G_{S} V_{t h}\right)^{2}
\end{array} \\
& =20 \cdot 10^{-6}\left(3-V_{S}-1\right)^{\cdot 2} \\
& I_{s} \cdot 100 k=V_{s} \\
& \begin{aligned}
V_{S} \cdot 1_{0}^{\prime s} & =20 \cdot 10_{2}^{-6}\left(2-V_{s}\right)^{2} \\
V_{s} & =2\left(4-4 V_{S}+V_{s}^{2}\right)
\end{aligned} \\
& 2 V_{5}^{2}-9 V_{5}+8=0 \\
& V_{S}=\frac{9 \pm \sqrt{17}}{4}=\left\{\begin{array}{l}
1.22 \mathrm{~V} \\
3.28 \mathrm{~V}
\end{array}\right. \\
& V_{S}=1.22 \mathrm{~V} \quad I_{S}=12.2 \mu \mathrm{~A} . \\
& V_{G S}=1.78 \mathrm{~V} \\
& V_{D}=10 \mathrm{~V}-400 \mathrm{k} \cdot 12.2 \mathrm{~h} \mathrm{~A}
\end{aligned}
$$

3. Time-Domain Analysis [15 points]. An opamp with rail-to-rail output voltage swing is connected to a 5 V supply. The opamp can supply or sink a maximum of 1 mA of current at its output terminal. It is driving a 10 pF load capacitor as shown. The input is driven with an ideal square wave, $\mathrm{V}_{\text {in }}(\mathrm{t})$, that goes from 0 to 5 V at a frequency of 10 MHz . Plot the output voltage waveform, $\mathrm{V}_{\mathrm{o}}(\mathrm{t})$.

$$
\begin{aligned}
V_{0}(t)=\frac{I \cdot Q_{0} t}{C_{L}}= & \frac{\operatorname{lm}}{100} \Delta t=10^{8} \Delta t . \\
& \frac{5 V}{10^{8}}=50 \mathrm{~ns} .
\end{aligned}
$$

Frequency response

$$
A(s)=\frac{A_{0}}{\left(1+s / \omega_{p_{1}}\right)\left(1+s / \omega_{p_{2}}\right)}
$$

$$
\begin{aligned}
& \left(v_{+}-v_{-}\right) A(s)=v_{0} \\
& \frac{v_{-}-v_{0}}{R_{2}}+\frac{v_{-}}{R_{1}}=0 \\
& v_{-}=\frac{R_{1}}{R_{1}+R_{2}} v_{0} \quad v_{-}=\beta v_{0} \\
& \beta=\frac{R_{1}}{R_{1}+R_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(V_{i}-\beta V_{0}\right) A(s)=V_{0} \\
& \frac{V_{0}}{v_{i}}=\frac{A(s)}{1+\beta A(s)} \\
& \text { loop gain }=A \beta=\frac{A_{0} \beta}{\left(1+s / \omega_{p_{1}}\right)\left(1+s / \omega_{p_{2}}\right)}
\end{aligned}
$$

Since $D C$ gain $=105 \quad \omega_{p_{1}}=200 \pi \mathrm{rad} / \mathrm{sec} \quad \omega_{p_{2}}=4 \times 10^{7} \pi \mathrm{rad} / \mathrm{sec}$

$$
\omega_{p_{1}} \cdot A_{D C}=2 \times 10^{7} \pi \mathrm{rad} / \mathrm{sec}<\omega_{p_{2}}
$$

$W_{u} \rightarrow$ oft the unity gain frequency $\triangleq(1+A \beta) \omega_{p_{1}} \gg \omega_{p_{1}}$ the phase introduced by first pole $\left(\omega_{p_{1}}\right) \approx 90^{\circ}$

$$
\begin{aligned}
& -\tan ^{-1}\left(\frac{\omega_{u}}{\omega_{p_{1}}}\right)-\tan ^{-1}\left(\frac{\omega_{u}}{\omega_{p_{2}}}\right)=-100^{\circ} \\
& -90-\tan ^{-1}\left(\frac{\omega_{u}}{\omega_{p_{2}}}\right)=-100^{\circ} \\
& \omega_{u}=\omega_{p_{2}} \tan 10^{\circ}
\end{aligned}
$$

The magnitude of loop gain $=1$ (a) ω_{a}

$$
\begin{aligned}
& \left|\frac{A_{0} \beta}{\left(1+\frac{j \omega_{u}}{\omega_{p_{1}}}\right)\left(1+\frac{j \omega_{u}}{\omega_{p_{2}}}\right)}\right|=1 \\
& \omega_{a} \\
& \frac{10^{5}(\beta)}{\omega_{p_{2} \tan 10^{\circ}}^{\omega_{p_{1}}}\left|\left(1+j \tan 10^{\circ}\right)\right|}=1 \\
& \beta=\frac{\omega_{p_{2}} \tan 10^{\circ}}{10^{5} \omega_{p_{1}}}\left|1+j \tan 10^{\circ}\right| \\
& \beta=\frac{4 \pi \times 10^{*}}{2 \pi \times 100 \times 10^{5}} \cdot \tan 10^{\circ}\left|1+j \tan 10^{\circ}\right| \quad \frac{R_{2}}{R_{1}+R_{1}}=1-\beta \\
& \beta=2 \tan 10^{\circ}\left|1+j \tan 10^{\circ}\right| \\
& \beta=0.36 \\
& Q_{2}=1.79 \mathrm{KOhm} \\
& \frac{R_{1}}{R_{1}+R_{2}}=\beta \\
& \frac{\dot{R}_{2}}{R_{1}}=\frac{(1-\beta)}{\beta} \\
& R_{2}=\frac{(1-\beta) R_{1}}{\beta} \\
& a_{1}=1 \mathrm{~K} \Omega
\end{aligned}
$$

к

$$
\begin{aligned}
& \text { (b). } \quad V_{0}(s)=v_{i}(s) \cdot H(s) \quad v_{i}(s)=1 / s \\
& H(s)=\frac{A(s)}{1+\beta A(s)}=\frac{A_{0}}{\left(1+s / \omega_{p_{1}}\right)\left(1+s / \omega_{p_{1}}\right)} \\
& =\frac{A_{0}}{\left(A_{0} \beta\right)+\left(1+\frac{s}{\omega_{p_{1}}}\right)\left(1+s / \omega_{p_{2}}\right)} \\
& \text { Multiply by } \\
& \omega_{p_{1}} \omega_{p_{2}} \\
& =\frac{A_{0} \omega_{p_{1}} \omega_{p_{2}}}{\left(A_{0} \beta\right) \omega_{p_{1}} \omega_{p_{2}}+\left(s+\omega_{p_{1}}\right)\left(s+\omega_{p_{2}}\right)} \\
& \begin{array}{l}
\omega_{p_{1}}=2 \pi \times 10^{2} \mathrm{rad} / \mathrm{s}=\frac{A_{0} \omega_{p_{1}} \omega_{p_{2}}}{\omega_{p_{2}}=4 \pi \times 10^{7} \mathrm{rad} / \mathrm{s}} \begin{array}{l}
s^{2}+s\left(\omega_{p_{1}}+\omega_{p_{2}}\right)+\omega_{p_{1}} \omega_{p_{2}}\left(1+A_{0} \beta\right)
\end{array} A_{0}=10^{5} \\
\beta=\frac{R_{1}}{R_{1}+R_{2}}
\end{array} \\
& H(s)=\frac{A_{0} \omega_{p_{1}} \omega_{p_{2}}}{(s+a)(s+b)} \\
& \beta=\frac{1}{5} \\
& a=1.416 \times 10^{7} \mathrm{rad} / \mathrm{sec} \\
& b=11.1 \times 10^{7} \mathrm{rad} / \mathrm{sec} \\
& V_{0}(s)=\frac{A_{0} \omega_{p_{1}} \omega_{p_{2}}}{s(s+a)(s+b)}=\frac{K_{1}}{s}+\frac{K_{2}}{s+a}+\frac{K_{3}}{s+b} \\
& A_{0} \omega_{p_{1}} \omega_{p_{2}}=k_{1}(s+a)(s+b)+k_{2} s(s+b)+k_{3} s(s+a)
\end{aligned}
$$

Set $S=0 \quad k_{1}=\frac{A_{0} \omega_{p_{1}} \omega_{p_{2}}}{a b} \quad K_{2}=\frac{-A_{0} \omega_{p_{1}} \omega_{p_{2}}}{a(b-a)} \quad K_{3}=\frac{-A_{0} \omega_{p_{1}} \omega p_{2}}{b(a-b)}$

Taking inverse laplace transform

$$
\begin{gathered}
V_{0}(t)=k_{1} a(t)+k_{2} e^{-a t} u(t)+k_{z} e^{-b t} u(t) \\
V_{0}(t)=A_{0} \omega_{p 1} \omega_{p_{2}}\left(\frac{1}{a b}-\frac{e^{-a t}}{a(b-a)}-\frac{e^{-b t}}{b(a-b)}\right) u(t) \\
A_{0}=10^{5} \\
a=1.416 \times 10^{7} \mathrm{rad} / \mathrm{sec} \quad \omega_{p_{2}}=4 \pi \times 10^{7} \mathrm{rad} / \mathrm{sec} \\
b=11.15 \times 10^{7} \mathrm{rad} / \mathrm{sec} \\
V_{0}(t)=5-5.728 e^{-a t}+0.727 e^{-b t} \\
5 \text { see that gain is } 5 \text { if } t \rightarrow \infty
\end{gathered}
$$

