
1)
For this problem, the capacitors act like wires at t = 0 (as they are uncharged), while at
t = ∞ they behave like open circuits (as they are fully charged).

a) This is the scenario for two resistors in parallel.

I1 =
V
R1

I2 =
V
R2

b) Across C1 and C2, there is no voltage drop.

⇒ Vb − Va = V

c) There is no current flowing through the circuit, and hence there is no voltage drop across
R1 and R2. Vb − Va = −V

d) When switch 2 is closed, at equilibrium current flows only through the resistors. Since
R1 and R2 are now in series,

Vb − Vground = V R1

R1+R2

e) Before switch 2 was closed, the charges on the two capacitors are given by:

Q1 = C1V Q2 = C2V

After switch 2 was closed, the capacitors C1, C2 are in parallel with the resistors R2, R1

respectively. The charges are given by:

Q1′ = C1V
R2

R1+R2
Q2′ = C2V

R1

R1+R2

The changes in charges are given by:

∆Q1 = Q1′ −Q1 = −C1V
R1

R1+R2

∆Q2 = Q2′ −Q2 = −C2V
R2

R1+R2
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2)
Let r denote the radial vector pointing outwards from the center of the spherical shells.

a) First, slice the region into concentric spherical shells of thickness dr. Note that these
shells together constitute resistors in series.

R =
∫
dR =

∫
ρdl
A
=

∫ b

a
ρ dr
4πr2

= ρ
4π (

1
a
−

1
b
)

b) Take A = 4πb2. (One can also use A = 4πa2)

Taylor expanding the expression from a),

R = ρ
4π

b−a
ab

= ρ
4π

L
b(b−L) =

ρL
4πb2

(1− L
b
)−1 ∼= ρL

4πb2
= ρL

A

c) j(r) = I

4πr2
= −

Vab

ρ
ab
b−a

1
r2
r̂
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Solution 3: 

 

a.  Since  both portions  of  the  capacitor  (one without  dielectric  and  the  other with 

dielectric)  would  experience  the  same  potential  difference  when  connected  in  a 

circuit,  the  given  capacitor  can  be  considered  as  a  combination  of  2  capacitors  in 

parallel. 

 

One of these capacitors has no dielectric and has height (L‐h). 

C1= Aε⁄d= L*(L‐h)/d 

 

The other capacitor has fuel as dielectric and height h. 

C2= K*L*h/d 

 

Ceq= C1+C2 

 

Ceq= L/d [L‐h+Kh] ……………………………………………(1) 

 

 

b.  Now if fuel of dielectric constant (K+ ξ) is used, the Ceq would change to: 

Ceq’ = = L/d [L‐h+(K+ ξ)h]………………………………..(2) 

Since fuel gauge uses the value of capacitance to measure the fuel level and Ceq’ > Ceq, 

the gauge will show more fuel level than actually present. 

% error can be expressed as (Ceq’‐ Ceq)*100/ Ceq 

% error= L ξ h/K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 







Problem 5

Due to the cylindrical geometry, we use Gauss’s law to solve this problem. The problem is equivalent
to a cylinder with charge density +ρ with radius R centered at O superimposed with a cylinder with
charge density −ρ with radius r centered at d. Then, in the inner cylinder the net charge density is 0,
giving us the scenario described in the problem.
First consider the cylinder with charge density +ρ with radius R centered at O. Take the coordinates of
the cylindrical coordinate system to be (ξ, θ, z). As the system is rotationally symmetric, if we are at a
point ξ, it should not depend what θ we are at, since no matter what θ is, the system will look the same.
For the same reason, the field cannot depend on the z coordinate. Thus, | ~E+| is only a function of ξ.
Since the cylinder is infinite, the charge distribution looks the same in both directions in z. Thus, there
can be no force acting in the z direction. Similarly, if we draw a line connecting the location of a charge
and the center, there will be as much charge to the left as to the right of that line, so there cannot be a
force in the θ direction. Thus, ~E+ only point in the ξ direction.
Choose a Gaussian surface that is a cylinder with center O, has radius ξ, and length l. As argued before,
the electric field points radially, so the endcaps of the cylinder do not contribute to the Gauss’s law
integral, as the area normal of the endcaps point in the ẑ direction, and ẑ · ξ̂ = 0. On the rest of the
cylinder, the area normal vector points radially outward. Thus for points ξ < R,

∮
~E+(ξ < R) · d ~A = | ~E+(ξ < R)|2πξl =

qencl

ǫ0
=

ρπξ2l

ǫ0

Which gives

~E+(ξ < R) =
ρ

2ǫ0
~ξ

By a similar argument, we get that the field due to the negative charge density (inside the negative
charge density region) is (accounting for the proper shift in coordinates)

~E
−
(|~ξ − ~d| < r) = −

ρ

2ǫ0
(~ξ − ~d)

So the total field is

~E = ~E+ + ~E
−
=

ρ

2ǫ0
(~ξ − (~ξ − ~d)) =

ρ

2ǫ0
~d =

ρd

2ǫ0
x̂ =

ρd

2ǫ0
(cos(θ)r̂ − sin(θ)θ̂)
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