Physics 7B Spring 2015 Section 1 Midterm 2 Prof. Bordel

Trevor Grand Pre

April 6, 2015

1 Problem 1

a) This wire can be thought of as two resistors in series where $R_{1}=\rho_{1} \frac{l_{1}}{A}$ and $R_{2}=\rho_{2} \frac{l_{2}}{A}$. The Equivalent resistance is

$$
\begin{equation*}
R_{e q}=\rho_{1} \frac{l_{1}}{A}+\rho_{2} \frac{l_{2}}{A} \tag{1}
\end{equation*}
$$

b) In order to calculate the ratio of V / V_{0}, we must first note that the part of the wire submerged in helium can be considered as the second resistor with $\rho_{2}=0$. This means that $R_{e q}$ is

$$
\begin{align*}
R_{e q} & =\rho_{1} \frac{l-x}{A} \tag{2}\\
& =\rho_{1} \frac{l-x}{A} \bar{l} \tag{3}\\
& =\frac{R_{0}(l-x)}{l}, \tag{4}
\end{align*}
$$

where $R_{0}=\rho_{1} \frac{l}{A}$ and represents the resistance of the wire when the tank is empty. This means that $V_{0}=I_{0} R_{0}$ and $V=I_{0} \frac{R_{0}(l-x)}{l}$ and the fraction

$$
\begin{align*}
V / V_{0} & =\frac{I_{0} R_{0}}{I_{0} R_{0}} \frac{l-x}{l} \tag{5}\\
& =\left(1-\frac{x}{l}\right) \tag{6}\\
& =(1-f), \tag{7}
\end{align*}
$$

where $f=\frac{x}{l}$.

2 Problem 2

a)The equivalent resistance is found by treating the two resistors in series and adding them together: $R_{e q}=R_{1}+R_{2}=2 R$. The equivalent capacitance is found by treating the two capacitors in parallel: $C_{e q}=C_{1}+C_{2}=2 C$.
b) The differential Equation of of the circuit is

$$
\begin{equation*}
\varepsilon=R_{e q} \frac{d Q}{d t}+\frac{Q}{C_{e q}} \tag{8}
\end{equation*}
$$

where $I=\frac{d Q}{d t}$.
c) When the circuit is initially closed, at $\mathrm{t}=0$, there is very little charge on the plates of the capacitor $(\mathrm{Q}=0)$ and thus very little voltage, $V_{c}=Q / C=0$. Although there is initially no charge or voltage across the capacitor, charge will almost instantly flow to the capacitor once the circuit is closed. Thus, there is current at $\mathrm{t}=0$. Based on I and V , we can conclude that the capacitor acts like a short for t close to $\mathrm{t}=0$, so it could be replaced by an ideal wire, which means

$$
\begin{align*}
I & =\frac{\varepsilon}{R_{e q}} \tag{9}\\
& =\frac{\varepsilon}{2 R} \tag{10}
\end{align*}
$$

A capacitor will continue to collect charge until $Q=Q_{\text {max }}$ and the voltage across the capacitor is equal to the voltage of the battery, $V_{C}=$ $Q / C=\varepsilon$ at $t=\infty$. At this time there is no more charge motion because the capacitor has reached its maximum charge, so $\mathrm{I}=0$. At $t=\infty$, enough time will have passed for the voltage across the capacitor to be the same as the voltage at the battery. This means that based on I and V, the capacitor acts like an open circuit.

Problem 3

a) Let M be any point at a radial distance $R_{1}<r<R_{2}$. Because $L \gg R_{2}$, the field in this region is well-approximated by that of an infinite cylinder. By symmetry, the electric field cannot depend on the longitudinal or angular coordinates (z, θ) and must point in the \hat{r} direction. Using the Gaussian surface sketched in Fig. 1, the E-field is perpendicular to the ends of the cylinder and normal to the curved surface. Gauss's law in integral form therefore tells us that

$$
\begin{aligned}
\oint \vec{E} \cdot d \vec{A} & =\frac{Q_{\mathrm{en}}}{\epsilon_{0}} \\
|\vec{E}| 2 \pi r L & =\frac{Q}{\epsilon_{0}} .
\end{aligned}
$$

Thus we see that when $R_{1}<r<R_{2}$

$$
\vec{E}=\frac{Q / L}{2 \pi \epsilon_{0} r} \hat{r} .
$$

Note that if $r<R_{1}$ or $r>R_{2}, Q_{\mathrm{en}}=0$ so the E-field vanishes except when $R_{1}<r<R_{2}$.
b) Since we have already determined the electric field, the potential difference between the surfaces is best found by performing a line integral.

$$
\begin{aligned}
|\Delta V| & =\left|\int \vec{E} \cdot d \vec{l}\right| \\
& =\frac{Q / L}{2 \pi \epsilon_{0}}\left|\int_{R_{1}}^{R_{2}} \frac{\bar{r}}{r} \cdot \hat{r} d r\right| \\
& =\frac{Q / L}{2 \pi \epsilon_{0}}\left|\int_{R_{1}}^{R_{2}} \frac{d r}{r}\right| \\
& =\frac{Q / L}{2 \pi \epsilon_{0}} \ln \left(R_{2} / R_{1}\right)
\end{aligned}
$$

FIGURE 1. Gaussian surfaces for finding the electric field inside a cylindrical capacitor.

FIGURE 2. Equivalent circuit for determining the capacitance when filled with two different dielectrics.
c) Capacitance is defined as $C \equiv Q / V$. We plug in the result of part (b) to find that, for this geometry,

$$
C=\frac{2 \pi \epsilon_{0} L}{\ln \left(R_{2} / R_{1}\right)}
$$

d) This arrangement of dielectrics is mathematically equivalent to the circuit with two capacitors in series shown in Fig. 2. Recall that a dielectric increases the capacitance as $C=K C_{0}$. Using this fact and the results of part (b), we see that

$$
\begin{aligned}
& C_{1}=2 \pi \epsilon_{0} L \frac{K_{1}}{\ln \left(\frac{R_{1}+d}{R_{1}}\right)} \\
& C_{2}=2 \pi \epsilon_{0} L \frac{K_{2}}{\ln \left(\frac{R_{2}}{R_{1}+d}\right)}
\end{aligned}
$$

Applying the rule for adding capacitances in series we get

$$
\begin{aligned}
C & =\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)^{-1} \\
& =2 \pi \epsilon_{0} L\left(\frac{\ln \left(\frac{R_{1}+d}{R_{1}}\right)}{K_{1}}+\frac{\ln \left(\frac{R_{2}}{R_{1}+d}\right)}{K_{2}}\right)^{-1} \\
& =2 \pi \epsilon_{0} L \frac{K_{1} K_{2}}{K_{2} \ln \left(\frac{R_{1}+d}{R_{1}}\right)+K_{1} \ln \left(\frac{R_{2}}{R_{1}+d}\right)}
\end{aligned}
$$

For sanity, we can verify that this answer behaves as expected when $d=R_{2}-R_{1}$ or $d=0$.

Problem 4

We will need the electric potential at a height z along the symmetry axis. This is found in a straightforward way by integrating. I use the convention that $V=0$ when infinitely far from the charged disk.

$$
\begin{aligned}
V(z) & =\int \frac{k d Q}{r}=k \int_{0}^{R} \int_{0}^{2 \pi} \frac{\sigma r d \theta d r}{\sqrt{r^{2}+z^{2}}}=k \int_{0}^{R} \frac{\sigma 2 \pi r d r}{\sqrt{r^{2}+z^{2}}} \\
& =2 \pi \sigma k \int_{0}^{R} \frac{r}{\sqrt{r^{2}+z^{2}}} d r=2 \pi \sigma k\left(\sqrt{R^{2}+z^{2}}-z\right)
\end{aligned}
$$

You can verify that this makes sense in the limit $z \rightarrow \infty$. Now we apply conservation of energy. The initial energy will be purely potential, and is zero by the convention chosen above. The final energy is thus

$$
\begin{gathered}
\mathrm{KE}(z)+\operatorname{PE}(z)=\mathrm{KE}(\infty)+\mathrm{PE}(\infty)=0 \\
\mathrm{KE}(z)=-\operatorname{PE}(z) \\
\mathrm{KE}(z)=e V(z) \\
\mathrm{KE}(z)=2 \pi k \sigma e\left(\sqrt{R^{2}+z^{2}}-z\right)
\end{gathered}
$$

Problem 5

a)

We take a gradient to find the field.

$$
\vec{E}=-\vec{\nabla} V(r)=-\frac{d V}{d r} \hat{r}=\frac{q}{4 \pi \epsilon_{0}} e^{-r / a}\left(\frac{1}{a r}+\frac{1}{r^{2}}\right) \hat{r}=\frac{q}{4 \pi \epsilon_{0} r} e^{-r / a}\left(\frac{1}{a}+\frac{1}{r}\right) \hat{r}
$$

b)

At a constant r, the electric field is a constant. Thus, the flux integral is trivial. Note that the outward normal, which is the direction of $d \vec{A}$ points along \hat{r}. We also have that the surface area of a sphere of radius r is $4 \pi r^{2}$.

$$
\Phi_{E}(r)=\oint \vec{E} \cdot d \vec{A}=|\vec{E}| 4 \pi r^{2}=\frac{q}{4 \pi \epsilon_{0} r} e^{-r / a}\left(\frac{1}{a}+\frac{1}{r}\right) 4 \pi r^{2}=\frac{q}{\epsilon_{0}} e^{-r / a}\left(1+\frac{r}{a}\right)
$$

c)

By Gauss's law,

$$
\Phi_{E}(r)=\frac{Q_{t o t}}{\epsilon_{0}}
$$

So we get that

$$
Q_{t o t}=\epsilon_{0} \Phi_{E}(r)=q e^{-r / a}\left(1+\frac{r}{a}\right)
$$

As $r \rightarrow \infty$, we get that $Q_{t o t} \rightarrow 0$. We can interpret this as the total charge of an atom being neutral (the proton charges and the electron charges cancel out).
d)

We see that for a negative charge $d Q$ in a shell of thickness $d r$, (note ρ is constant across the surface as we told so in the first paragraph of the program)

$$
d Q=\rho d V=\rho 4 \pi r^{2} d r
$$

We also have that $Q=Q_{t o t}-q$, with q being the positive charge. Since the positive charge is constrained to the center where we are not trying to find the field it will be independent of r and thus, we get that $\frac{d Q}{d r}=\frac{d Q_{t o t}}{d r}$. This allows us to plug in the answer from the previous part.

$$
\rho=\frac{1}{4 \pi r^{2}} \frac{d Q_{t o t}}{d r}=-\frac{q}{4 \pi r^{2}} \frac{r e^{-r / a}}{a^{2}}=-q \frac{e^{-r / a}}{4 \pi a^{2} r} .
$$

Which is valid for all points $r>a$ where there is no positive charge.

