
Problem 1

a)

The flux is

ΦB =

∫
~B · d ~A = Bh(x2 − x1)

Where x1 and x2 are the positions of the two rods. Using Faraday’s law

|E| =
dΦB

dt
= Bh(v0 − v1)

The current this EMF makes will be such that the change in flux is resisted (Lenz’s law). This means
that the magnetic field due to the induced current should point outward and thus the current should go
counterclockwise. The magnitude of this current is

I =
E

2R
=

Bh(v0 − v1)

2R

The force on the right rod is then

~F = I~l × ~B =
B2h2(v0 − v1)

2R
(−ŷ ×−ẑ) =

B2h2(v0 − v1)

2R
x̂

This is equal to M dv1

dt
. Thus,

dv1

dt
= −

B2h2

2RM
v1 +

B2h2v0

2RM

The solution to this is on the equation sheet.

v1 = v0(1− e−
B

2
h
2

2RM
t)

b)

After a long time t ≫ B
2
h
2

2RM
, the exponential term becomes small and v1 → v0. This is expected as if the two

rods are traveling at the same speed, the flux through the area contained by them will no longer change,
and thus the time derivative of the flux will be zero and there will be no induced EMF.
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Problem 2

2(a)

Using the right hand grip rule, we see that the straight and semicircular segments
all produce fields at P that point into the page. Call this the −ẑ direction.

2(b)

Applying Biot-Savart to the semicircular segment we have:

Bc =
µ0I

4π

∫

dl× r̂

r2
= −

µ0I

4π

∫ π

0

ddθ

d2
ẑ = −

µ0I

4d
ẑ. (1)

Using the formula for the magnitude of B for an infinite wire, B = µ0I
2πR

, the
two straight segments each contribute half of this. This can be argued either by
symmetry or by doing the Biot-Savart integral from x = −∞ to x = 0. Hence
the total field at P is:

B = −
µ0I

4πd
ẑ−

µ0I

4πd
ẑ−

µ0I

4d
ẑ = −

µ0I

4d

(

1 +
2

π

)

ẑ (2)

2(c)

Since v is parallel to B, v×B = 0, so the Lorentz force exerted on the electron
is zero: F = qv ×B = 0.

Problem 3

E = 0 inside conductors. The net charge of the overall system is +Q0.

3(a)

(i) Pick a Gaussian surface that lies entirely within the thick conducting shell
(it doesn’t even have to be spherical). Since E = 0, we have:

∮

E · dA = 0 ⇒ Qenc = 0. (3)

The inner shell has positive charge 2Q0, so the inner surface of the thick shell
must have −2Q0.

(ii) The outer shell has overall net charge −Q0, which means there will be a
charge of +Q0 residing on its outer surface if there is −2Q0 on its inner surface.

1



3(b)

Spherical symmetry and Gauss’s Law give us |E| = kQenc/r
2, so:

E =



















0 for r < R1

2Q0

4πǫ0r2
r̂ for R1 ≤ r < R2

0 for R2 ≤ r < R3

Q0

4πǫ0r2
r̂ for R3 ≤ r

(4)

Using V = −
∫

E · dl, we integrate inwards along a radial line from r = ∞ (so
that V (∞) = 0 is our reference point).

V (R3) = −

∫ R3

∞

Q0

4πǫ0r2
dr =

Q0

4πǫ0R3

(5)

From R3 to R2, E is zero so there will be no contribution to V in the line
integral, hence V (R3) = V (R2) (just like the midterm 2 problem).

For R1:

V (R1) = −

∫ R1

∞

E · dl = V (R3)−

∫ R1

R2

2Q0

4πǫ0r2
dr =

Q0

4πǫ0

(

2

R1

−
2

R2

+
1

R3

)

(6)
As before, since E = 0 for r < R1 inside the thin shell, there is no change in
potential and V (R1) = V (R2).

3(c)

Connecting the two spheres with a conducting wire means their potentials will be
the same, and charges will move to accomodate this. Looking at the calculation
we just did in part (b), the potential change between R2 and R1 is given by

∆V = −
∫ R1

R2

E · dl. If V (R1) = V (R2), then ∆V = 0 and the only way this is
possible is if E = 0 in the region between the two spheres R1 ≤ r ≤ R2. So, by
Gauss’s law, there is no charge on the inner thin sphere, and all the charge has
moved to the outer surface of the thick conducting sphere! There will therefore
be a charge +Q0 on the outer surface of the outer sphere, and no charge on any
of the other surfaces, and the potential of the system will be V = Q0

4πǫ0R3

. This
makes sense intuitively because by connecting the spheres we have essentially
made them into one big conductor and charge always moves to the outer surface
of a conductor.

Problem 4

4(a)

In order to do this problem one needs to recall the mechanical analogs of capaci-
tors and inductors. One easy way to remember this is to look at the expressions
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for energy in the two systems: KE = 1

2
mv2, PE = 1

2
kx2, UC = q2

2C
, and

UL = 1

2
LI2. Now v = dx

dt
, and in a circuit I = dq

dt
, which would suggest the

correspondence:

x ↔ q, v ↔ I, m ↔ L, k ↔ C−1. (7)

Our circuit will therefore have two capacitors and one inductor. Recall that the
spring constants for two springs in series add in the same way resistors do in
parallel:

1

ke
=

1

k1
+

1

k2
=⇒ ke =

k1k2
k1 + k2

. (8)

So the equation of motion for our mass spring system will be:

ẍ = −
ke
m

x =⇒ ω2 =
1

m
(

1

k1

+ 1

k2

) (9)

Under our mapping (7) this becomes:

ω2 =
1

L (C1 + C2)
. (10)

Our circuit will therefore have an equivalent capacitance of C1 + C2, so it will
be an inductor L in series with two capacitors C1 and C2 in parallel.

4(b)

The differential equation for the charge will be just as in the mass-spring system:

q̈ = −
1

L (C1 + C2)
q. (11)

The solution of this differential equation is of the form: Q = Q0 cos(ωt + δ)
where Q0 and δ represent the amplitude and phase of the oscillation which will
be fixed by initial conditions, and ω is as given above.

3



Problem 5

Let’s define a coordinate system such that the plates are at x = ±d/2. The problem is asking us to determine
when the configuration with the sphere hanging between the two plates (x = 0) ceases to be stable, so we
should recognize this as a balancing of forces problem. The sphere will feel two types of force - gravitational
and electromagnetic. We’ll calculate these two forces as a function of displacement from equilibrium, and
see when the net force ceases to be restoring.

Electromagnetic. It is important to realize that the sphere need not be neutral. Connecting it to ground
sets its electric potential to zero, and charge will flow (via the wire) onto or off of the sphere until this is the
case. The potential at x due to the plates is

Vp(x) = V0

(

2

d
x

)

. (1)

The potential at the surface of the sphere due to the charge is

VQ(x) =
Q

4πǫ0R
. (2)

The total potential at the surface of the sphere is the sum of these two contributions. Setting this sum equal
to zero gives us the charge on the sphere:

Q

4πǫ0R
+ V0

(

2

d
x

)

= 0 −→ Q = −
8πǫ0V0R

d
x. (3)

Now we can find the electric force on the sphere.

~Fe = Q~E = −Q~∇V = −Q
2V0

d
x̂ =

16πǫ0V
2
0 R

d2
xx̂. (4)

We’ve used the fact that the electric field must be perpendicular to the planes by symmetry (they can be
approximated as infinite) and must be uniform by Gauss’s law (consider a Gaussian cube with two faces
parallel to the planes) to establish that dV/dx = ∆V/∆x.

Gravitational. The total gravitational force on the sphere is ~F = −Mgẑ. If the wire is at an angle θ
from the vertical, the component of the force perpendicular to the wire is then

~Fg,⊥ = −Mg sin θ = −
Mg

L
xθ̂. (5)

For small angles θ̂ ≈ x̂, and we can write

~Fg = −
Mg

L
xx̂. (6)

Total. The net force on the sphere is just the sum of these two forces:

~Ftot = ~Fg + ~Fe =

(

16πǫ0V
2
0 R

d2
−

Mg

L

)

xx̂. (7)

Notice that this is a Hooke’s Law force. The equilibrium at x = 0 will be unstable, and any small perturbation
will result in the sphere moving towards one of the plates, when the coefficient is positive. Rearranging this
inequality gives the corresponding condition on V0:

|V0| >

√

Mgd2

16πǫ0LR
. (8)
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Problem 6

A. We can think about the resistor as being composed of spherical shell resistors of area 4πr2, length dr,
and resistivity ρ(r). These resistors have resistance dR = ρ(r)L/A = ρ(r)dr/4πr2. They are connected in
series, so must all have the same current I flowing through them. Then the drop in voltage across one of
these resistors is dV = IdR = Iρ(r)dr/4πr2. Because electric field is the negative gradient of potential,
the fact that the field doesn’t depend on r implies that dV/dr is also independent of r. This means that
dV/dr ∝ ρ(r)/r2 is independent of r, so that ρ(r) ∝ r2, and we conclude that s = 2.

B. The total resistance of the spherical resistor is just the sum of the resistances of all the shells, because
resistors add in series:

R =

∫

dR =

∫ b

a

ρ(r)dr

4πr2
=

∫ b

a

ρ0
4πa2

=
ρ0
4π

b− a

a2
. (9)

Then the current is given by Ohm’s law:

I =
V

R
=

4πa2V

ρ0(b− a)
. (10)

C. The circuit heats the water by dissipating power at the resistor. The dissipated power is

P = IV =
4πa2V 2

ρ0(b− a)
. (11)

Therefore the energy dissipated during a time interval of length t is

∆E = Pt =
4πa2V 2

ρ0(b− a)
t. (12)

Change in temperature is related to energy transfer by the specific heat:

∆E = Mcw(T − T0) −→ T =
∆E

Mcw
+ T0 =

(

4πa2V 2

Mcwρ0(b− a)

)

t+ T0. (13)

Problem 7

A. The efficiency of a heat engine is defined to be e = W/Qin, the amount of work output (benefit) per heat
input (cost). For the real heat engine, there is not enough information given to be any more specific. For a
Carnot engine, we can use the given formula (which you should be able to derive):

e = 1−
Tc

Th

= 1−
TL

2TL

=
1

2
. (14)

B. Differential entropy change is given by dS = dQ/T , where dS is entropy gained by the system and Q is
heat put into the system. Therefore, we can write

∆S =

∮

cycle

dS =

∮

cycle

dQ

T
. (15)

This is the best we can do without knowing more about the details of the engine.

C. The change in entropy of the universe during a single cycle of the Carnot engine is given by

∆S = −
Qin

TH Qout

TC

=
1

TL

(

−
Qin

2
+Qout

)

=
1

TL

(

−
Qin

2
+Qin −W

)

(16)

=
1

TL

(

Qin

2
− eQin

)

=
1

TL

(

Qin

2
−

Qin

2

)

= 0. (17)

We’ve used dS = dQ/T , e = W/Qin, and Qin = W +Qout.
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