Problem 1
a)

$$
\begin{aligned}
P & =|\mathbb{P}| \underline{\lambda}_{B E} \\
& =25\left(\frac{-8 \underline{j}+6 \underline{E}}{\sqrt{8^{2}+6^{2}}}\right)=-20 \underline{j}+15 \underline{k} \\
P_{x} & =0 \\
P_{y} & =-20 \quad P \quad P=0 \underline{i}-20 \underline{j}+15 \underline{k}
\end{aligned}
$$

b) Force couple system:

$$
\begin{aligned}
\underline{E} & =\underline{P}=-20 \underline{j}+15 \underline{K} \\
\underline{M} & =\underline{r} \times \underline{P} \text { where } \underline{r}=\underline{F B} \\
& =(-12 \underline{i}+8 \underline{j}+9 \underline{E}) \times(-20 \underline{j}+15 \underline{k}) \\
& =300 \underline{i}+180 \underline{j}+240 \underline{k}
\end{aligned}
$$

c)

$$
\begin{aligned}
\dot{\lambda}_{C F} & =(-8 \underline{j}-9 \underline{k}) \sqrt{\sqrt{8^{2}+9^{2}}} \\
\underline{\underline{H}}_{C F} & =\left(\lambda_{C F} \cdot \underline{H}\right) \lambda_{C F} \\
& =(-299)\left(\frac{-8 j-9 k}{\sqrt{8^{2}+9^{2}}}\right) \\
\underline{M}_{C F} & =+198.6 \underline{\underline{J}}+223.44 \underline{k}
\end{aligned}
$$

Problem 2

Part 1
a)

b)

$$
\begin{aligned}
& \text { D) } \quad \sum F_{x}=0 \Rightarrow \quad 20 \cos (30)-N_{c} \cos (45)=0 \\
& \sum F_{y}=0 \Rightarrow F_{B F}-10+20 \sin 30+N_{C} \sin (45)=0 \\
& +\quad \sum H_{D}=0 \Rightarrow A_{y}(3)-F_{B F}(2)-50+N_{c}(\cos 45)(2)+10(0.5)=0
\end{aligned}
$$

Solve system $\quad \Rightarrow \quad A_{y}=24.28 \mathrm{kN}$

$$
\begin{aligned}
& F_{B F}=-41.6025 \mathrm{kN} \\
& N_{c}=24.5 \mathrm{kN}
\end{aligned}
$$

c) Since force of member BF on the bar points downward (puship), it means member $B F$ is in compression. Hence, ir cannot be replaced by a rope since ropes only work in tension.

Part 2
a) bar about to slide down due to external loads \Rightarrow friction at c pointing upwards. (Reactions will be different to retain equilibriu-).
b)

$$
\begin{array}{ll}
\sum F_{x}=0 & 20 \cos (30)-N \cos (45)+\rho_{5} \cos (45)=0 \\
\sum F_{y}=0 & A_{y}+F_{B F}+20 \sin (30)+N \sin (45)-10+f_{5} \sin (45)=0 \\
\sum_{D}=0 & -3 A_{y}-2 F_{B F}-50+(0,1)(10)+2 N \cos (45)+2 \rho_{5} \sin (45)=0 \\
& f_{S}=1 N_{S}=0,5 N
\end{array}
$$

Solve system $\Rightarrow \quad A_{y}=162.8 \mathrm{kN}$

$$
\begin{aligned}
& F_{B F}=-214.8 \mathrm{kN} \\
& N=48.98 \mathrm{kN} \\
& J_{S}=26.5 \mathrm{kN}
\end{aligned}
$$

PUE C85: viliarurn 1
Pablem 3.
a)

$$
\stackrel{1}{a}_{4}^{4}
$$

$$
\theta=\tan ^{-1}\left(\frac{7.5}{10}\right)=36.87^{\circ}
$$

Taking manents about $H: \sum M_{H}=0=F F_{1}(A D)-F_{2}(A F)+H_{y}(A H)=0$

$$
\begin{aligned}
& \therefore H_{y}=\frac{(36)(20)+(36)(30)}{40}=45 \text { laips } \\
& \sum F_{x}=0=A_{x} \Rightarrow \frac{A_{x}=0 \text { leyps }}{} \\
& \sum F_{4}=0=A_{4}-F_{1}-F_{2}+H_{4}=0 \Rightarrow A_{4}=36+36-45=27 \mathrm{kips}
\end{aligned}
$$

(b) Zero-force members: $B C, D E$ a
(a) $F B D$ of $\operatorname{sen}^{2} t ~ A$:

$$
\frac{A \times P_{A B}}{A y P_{A C}} \quad \sum F_{y}=0=A_{y}-P_{A C} \sin \theta \Rightarrow P_{A C}=\frac{27}{\sin \left(36.87^{\circ}\right)}=45 \mathrm{kips}
$$

PBD of pint C :

$$
\sum F_{y}=0=P_{A C} \sin \theta+P_{C D} \sin \theta \Rightarrow P_{C D}=-P_{A C}=-45 \text { kips }
$$

\therefore Memper $C D$ is in comporession
d) Takee a vertical cut autting threngh nembers DF DGAEC

PSDD of right hand rection.

$$
\Sigma F_{4}=0=H_{y}+P_{P G} \sin \theta \Rightarrow P_{P G}=\frac{-45}{\sin 36.17}=-75 \mathrm{hips}
$$

Member $D G$ is an compression

Taking moments about f

$$
\begin{aligned}
\sum M_{a}=0 & =H_{Y}(F H)+P_{D F}(F G)=0 \\
& \Rightarrow P_{D_{F}}=-\frac{(15)(10)}{7.5}=-60 \mathrm{kips}
\end{aligned}
$$

- Member DF is in compression

$$
\begin{aligned}
& \sum F_{x}=0=A x \Rightarrow A_{x}=0 \text { kips } \\
& \sum M_{A}=0 \Rightarrow(A I) F_{1}-\left(A A_{1}\right)\left(F_{2}\right)+\left(A H_{1}\right) H_{y}=0 \\
& \Rightarrow H_{y}=\frac{(15)(36)+(30)(36)}{40}=40.5 \mathrm{kips} \\
& \Sigma_{y}^{\prime} F_{y}^{\prime}=0 \Rightarrow A_{y}-F_{1}-F_{2}+H_{y} \geqslant 0 \Rightarrow A_{y}=32.5 \mathrm{kirs}
\end{aligned}
$$

PARC $\psi^{h_{2}}$

$$
\Rightarrow p_{11} \cdot \operatorname{An}
$$

$F B P$ of maviber $B D$

$$
\begin{aligned}
\sum M_{D}=0 & \Rightarrow-B_{y}(D B)+F_{1}(D I)=0 \\
& \Rightarrow B_{y}=\frac{I F_{1}}{2}=18 \text { kips }
\end{aligned}
$$

PBD of joint A:

FBD of goint B :

$$
\begin{aligned}
P_{B_{B}} \in \int_{B_{B}}^{B_{y}} B_{X} \\
P_{B C}
\end{aligned} \quad \quad \quad T_{y}=0 \Rightarrow B_{y}-P_{B C}=0
$$

member BC is in comprescion

