Zworski - Fall 2014

NAME: STUDENT ID:

MATH 53 1st MIDTERM

Please answer each question on a separate page – you can write on the back of the page. Remember to write your name and section number on EVERY page you turn in. Thanks! Good Luck!

Problem 1. Let a and b be two vectors.

a) Simplify the expression $(a + b) \times a$.

b) Suppose that $\mathbf{a} = \langle 2, 6, 2 \rangle$ and $\mathbf{b} = \langle -1, 1, -1 \rangle$. What is the area of the triangle with sides \mathbf{a} , \mathbf{b} , and $\mathbf{b} - \mathbf{a}$?

Zworski - Fall 2014

NAME: STUDENT ID:

Problem 2. Determine the type (ellipsoid, paraboloid etc.) of the following quadric: $xy - z^2 + 1 = 0$. Sketch the intersections of this quadric with the planes x = 0, y = 0, and z = 0.

Zworski - Fall 2014

NAME: STUDENT ID:

Problem 3. Sketch the curve, $r = 4\cos\theta - \sec\theta$, $-\pi/2 < \theta < \pi/2$, and find the area enclosed by its loop. (Note that you have to find the limits in θ corresponding to the loop; recall that $\cos(\pi/3) = 1/2$.)

NAME:

STUDENT ID:

Problem 4. Match the following planar curves to their parametrization, with $-4 \le t \le 4$:

- a) $x = \cos(5t)$, $y = \sin^2(3t) + t\cos(2t)$;
- b) $x = t^2$, $y = \sin(t^3)$;
- c) $x = (e^t e^{-t})\sin(5t)/2$, $y = (e^t + e^{-t})\cos(5t)/2 + 10e^{-0.2t}\sin(5t)$;
- d) $x = \sin(5t)$, $y = \sin^2(3t) + |t|\cos(2t)$.

Please do not guess: negative points will be given for wrong matches. We have three versions of the exam with different arrangements of answers!

