Chemistry 120A Midterm 1 Solutions, Fall 2014

1. (a) (6 points) To find the wave vector k we use the equation:

$$
p=\hbar k
$$

Plugging in for the values given in the problem:

$$
k=p / \hbar=m * v / \hbar=\frac{10^{-30} \mathrm{~kg} * 1.3 * 10^{7} \mathrm{~m} / \mathrm{s}}{6 * 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s}} \approx 2 * 10^{10} \mathrm{~m}^{-1}
$$

(b) (6 points) The condition for diffraction for a particle on a slit is (i.e. interference occurs when):

$$
n \lambda=d \sin (\theta)
$$

While the maximum value of $\sin (\theta)$ is 1 , to observe diffraction d must be on the order of λ. For the particle:

$$
\lambda=2 \pi / k \approx \frac{6}{2 * 10^{10} m^{-1}} \approx 3 * 10^{-10} \mathrm{~m}
$$

(c) (8 points) In the Bohr model of the atom, momentum is quantized, which for a particle in a perfectly circular orbits gives the following condition:

$$
\begin{gathered}
l=r \times p=r m v=n \hbar \\
n=r m v / \hbar=\frac{10^{-10} \mathrm{~m} * 10^{-30} \mathrm{~kg} * 1.3 * 10^{7} \mathrm{~m} / \mathrm{s}}{6 * 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s}} \approx 2
\end{gathered}
$$

2. See picture below. Each item is worth five points each.
3. (a) (7 points) The probability of measuring a certain value of energy is given by $P=\left|a_{n}\right|^{2}$. We thus have: $P\left(E_{0}\right)=|\sqrt{2 / 3}|^{2}=2 / 3$ and $P\left(E_{1}\right)=|-\sqrt{1 / 3}|^{2}=$ 1/3.
(b) (7 points) One can either calculate $\langle\psi| \hat{H}|\psi\rangle$ or recognize that

$$
\langle\psi| \hat{H}|\psi\rangle=\langle E\rangle=\sum_{n}\left|a_{n}\right|^{2} E_{n}=(2 / 3)\left(\frac{\hbar \omega}{2}\right)+(1 / 3)\left(\frac{3 \hbar \omega}{2}\right)=\frac{5 \hbar \omega}{6}
$$

(c) (13 points) Integral runs from $-\infty$ to ∞

$$
\begin{aligned}
\langle\psi| \hat{x}|\psi\rangle & =\int\left(\sqrt{\frac{2}{3}} \phi_{0} e^{i E_{0} t / \hbar}-\sqrt{\frac{1}{3}} \phi_{1} e^{i E_{1} t / \hbar}\right) x\left(\sqrt{\frac{2}{3}} \phi_{0} e^{-i E_{0} t / \hbar}-\sqrt{\frac{1}{3}} \phi_{1} e^{-i E_{1} t / \hbar}\right) \\
& =\frac{2}{3} \int \phi_{0} x \phi_{0}+\frac{1}{3} \int \phi_{1} x \phi_{1}-\frac{\sqrt{2}}{3} \int \phi_{0} x \phi_{1} e^{i\left(E_{0}-E_{1}\right) t / \hbar}-\frac{\sqrt{2}}{3} \int \phi_{1} x \phi_{0} e^{-i\left(E_{0}-E_{1}\right) t / \hbar} \\
& =0+0-\frac{\sqrt{2}}{3} \int \phi_{1} x \phi_{0}(2 \cos \omega t) \quad \text { with }\left(E_{1}-E_{0}\right) / \hbar=\omega \\
& =-\frac{2 \sqrt{2}}{3}(\cos \omega t)\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(\frac{4 \alpha^{3}}{\pi}\right)^{1 / 4} \int x e^{-\alpha x^{2}} \\
& =-\frac{2 \sqrt{2}}{3}(\cos \omega t)\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(\frac{4 \alpha^{3}}{\pi}\right)^{1 / 4}\left(\frac{\pi}{4 \alpha^{3}}\right)^{1 / 2} \\
& =-\frac{2 \sqrt{2}}{3}(\cos \omega t)\left(\frac{1}{4}\right)^{1 / 4}\left(\frac{\alpha}{\alpha \sqrt{\alpha}}\right) \\
& =-\frac{2}{3}(\cos \omega t)\left(\frac{1}{\sqrt{\alpha}}\right)^{1}
\end{aligned}
$$

(d) (13 points) We use the sudden approximation. $\psi_{\text {new }}=\psi_{\text {old }}=\phi_{0}$
i. (short way) for HO we have $\langle T\rangle=\langle V\rangle=\langle E\rangle / 2=\frac{\hbar \omega}{4}$ when we use the HO ground state wavefunction. The only difference between the old potential and the new potential is that $V_{\text {new }}=2 V_{\text {old }}$. Thus:

$$
\langle E\rangle=\langle T\rangle+\left\langle V_{n e w}\right\rangle=\frac{\hbar \omega}{4}+2\left(\frac{\hbar \omega}{4}\right)=\frac{3 \hbar \omega}{4}
$$

ii. (longer way)

$$
\begin{aligned}
\langle E\rangle & =\int \phi_{0} \hat{H} \phi_{0}=\int \phi_{0}\left(\hat{T}+\hat{V}_{\text {new }}\right) \phi_{0} \\
& =\langle T\rangle+\int \phi_{0}\left(\hat{V}_{\text {new }}\right) \phi_{0} \\
& =\frac{\hbar \omega}{4}+\left(\frac{\alpha}{\pi}\right)^{1 / 2} \kappa \int x^{2} e^{-\alpha x^{2}} \\
& =\frac{\hbar \omega}{4}+\left(\frac{\alpha}{\pi}\right)^{1 / 2} \kappa\left(\frac{\pi}{4 \alpha^{3}}\right)^{1 / 2} \\
& =\frac{\hbar \omega}{4}+\frac{\kappa}{2 \alpha} \\
& =\frac{\hbar \omega}{4}+\frac{\hbar^{2} \alpha}{2 m} \\
& =\frac{\hbar \omega}{4}+\frac{\hbar \omega}{2} \\
& =\frac{3 \hbar \omega}{4}
\end{aligned}
$$

Figure 1: Particle in Coulomb potential of 2 protons for Problem 2

