
Chemistry 120A Midterm 2 Solutions
(by Jon Weisberg and Alison Altman)

1. Circle those of the following that are true about the 1-electron atom. Ignore the
spin of the individual electron in this problem.

(a) The binding energy of an electron in any ψnlm increases as Z2.
True

(b) The radial distribution function of the ψ310 eigenstate contains two nodes.
False

(c) The ψ200 eigenstate can be described by a vibrationally excited state of the
bare (l=0) coulomb potential.
True

(d) The square of the total orbital angular momentum of an electron in ψ322 is
larger than the square of its z-component by 2~2.
True

(e) For an electron in any ψnlm, the energy, magnitude of angular momentum, and
angular momentum in the z-direction are conserved.
True

(f) A magnetic field applied in the z-direction would lower the energy of an electron
in ψ311.
False

2. Circle those of the following that are true for a two-electron He atom, including
coulomb repulsion between the electrons and spin.

(a) The spatial wave function of the ground state is described by Ψ = ψ100(r1, θ1, φ1)×ψ100

(r2, θ2, φ2) with an effective Z less than 2.
True

(b) The total binding energy of two electrons in the ground state is larger than
8E0.
False

(c) The spatial wave function of an excited state of Helium can be described by
Ψ= ψ100(r1, θ1, φ1)×ψ210(r2, θ2, φ2).
False

(d) The ionization energy of pulling an electron out of the 1s2p configuration in-
volving single electron orbitals ψ100 and ψ210 is close to E0/4.
True

(e) This is a legitimate slater determinant of two electrons in the ground state,
where α denotes spin up and β denotes spin down.∣∣∣∣ψ100α(1) ψ100α(1)

ψ100α(2) ψ100α(2)

∣∣∣∣
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False

(f) The lowest energy state with a 1s2s configuration involving single electron
orbitals ψ100 and ψ200 is a spin triplet.
True

3. (a) The first order energy correction is given by:

〈φ0|V |φ0〉 =
−ε
2π

∫ 2π

0

e−i0θ(e2iθ + e−2iθ − 2)ei0θdθ

=
−ε
2π

∫ 2π

0

e2iθ + e−2iθ − 2)dθ

=
−ε
2π

[1/2ie2iθ − 1/2ie−2iθ − 2]|2π0

=
−ε
2π

[1/2i(1− 1)− 1/2i(1− 1)− 2π]

=
−ε
2π

[−2π]

= 2ε

(b) The first thing we need to do is construct a matrix of the unperturbed matrix
for the m = ±1, which is given by:(

E1 0
0 E1

)
Where E1 = (~2/2I). Next, we must create a perturbation matrix and evaluate
each component:

〈φ1|V |φ1〉 =
−ε
2π

∫ 2π

0

e−iθ(e2iθ + e−2iθ − 2)eiθdθ

=
−ε
2π

∫ 2π

0

e2iθ−iθ+iθ + e−2iθ−iθ+iθ − 2e−iθ+iθdθ

=
−ε
2π

∫ 2π

0

e2iθ + e−2iθ − 2e0dθ

=
−ε
2π

[1/2ie2iθ − 1/2ie−2iθ − 2]|2π0

=
−ε
2π

[1/2i(1− 1)− 1/2i(1− 1)− 2π]

=
−ε
2π

[−2π]

= 2ε
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Similarly, 〈φ1|V |φ1〉 = 2ε. The off-diagonal elements are equal and given by:

〈φ−1|V |φ1〉 =
−ε
2π

∫ 2π

0

eiθ(e2iθ + e−2iθ − 2)eiθdθ

=
−ε
2π

∫ 2π

0

e2iθ+iθ+iθ + e−2iθ+iθ+iθ − 2e+iθ+iθdθ

=
−ε
2π

∫ 2π

0

e4iθ + e0 − 2e2iθdθ

=
−ε
2π

[1/4ie4iθ + 1− 1/ie−2iθ − 2]|2π0

=
−ε
2π

[1/2i(1− 1) + 2π − 1/i(1− 1)i]

=
−ε
2π

[2π]

= −ε

Therefore, your perturbation matrix is given by:(
2ε −ε
−ε 2ε

)
And the total hamiltonian matrix is given by:(

E1 + 2ε −ε
−ε E1 + 2ε

)
To find the energies of this system, we must diagonalize the matrix by finding
when the determinate of the following matrix is 0:∣∣∣∣E1 + 2ε− E −ε

−ε E1 + 2ε− E

∣∣∣∣
This gives:

(E1 + 2ε− E)2 − ε2 = 0

(E1 + 2ε− E)2 = ε2

E1 + 2ε− E = ±ε
E1 + 2ε± ε = E±

Therefore, E+ = E1 + 3ε and E− = E1 + ε.

(c) To find the two new wave functions, we need to plug in our new solutions to:[
E1 + 2ε− E −ε

−ε E1 + 2ε− E

] [
a1
a2

]
= 0
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E− (the lower energy solution) gives:[
ε −ε
−ε ε

] [
a1
a2

]
= 0

When we multiply these matrices, we find that a1 = a2 or Ψ− = 1/
√

2(|ψ1〉 +
|ψ−1〉). Similarly, E+ (the higher energy solution) gives:[

−ε −ε
−ε −ε

] [
a1
a2

]
= 0

Here we find that a1 = −a2 or Ψ+ = 1/
√

2(|ψ1〉 − |ψ−1〉).
(d) Ψ+ = 1/

√
2(|ψ1〉 − |ψ−1〉). We plug and then we chug...

〈V 〉 =
−ε

2 ∗ 2π

∫ 2π

0

(e−iφ − eiφ)(ei2φ + e−i2φ − 2)(e−iφ − eiφ)

=
−ε

2 ∗ 2π

∫ 2π

0

(2− e−2iφ − e2iφ)(ei2φ + e−i2φ − 2)

=
−ε

2 ∗ 2π

∫ 2π

0

(2− e−2iφ − e2iφ)(ei2φ + e−i2φ − 2)

=
−ε

2 ∗ 2π

∫ 2π

0

(2e2iφ + 2e−2iφ − 4− ei4φ − 1− 2ei2φ − 1− e−i4φ + 2e−i2φ)

=
−ε

2 ∗ 2π

∫ 2π

0

(−6 + 2e2iφ + 2e−2iφ − ei4φ − 2ei2φ − e−i4φ + 2e−i2φ)

=
ε

2 ∗ 2π
6 ∗ 2π = 3ε

We integrate over all the einφ to get zero. The fact that this energy is the same
as the deviation from E1,−1 is a result of the 2 state degenerate system. Because
the superposition is of 2 eigenstates of the same energy (which is the kinetic
energy only), we could equate the total energy to the kinetic plus potential and
cancel the kinetic to get this answer. If it was not clear, the new eigenstates
can also be written: Ψ+ ∝ sinφ and Ψ− ∝ cosφ. The Ψ+ wavefunction is
higher in energy because there is high electron density in the regions where the
potential is high (in energy). This is clear because the density and potential
both go as sin2 φ.

(e) No other states are split. The integral 〈φ−m|V |φm〉 can only be nonzero for
m = ±1. Since we already took care of that state above, we conclude that no
other states are split.

(f) Any triplet state is acceptable. This means we need a symmetric spin function
and and an anti symmetric spatial function. Any of the three spin functions
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(ms = −1, 01 ) is fine.

Ψ =
1√
2

(ψ+(1)ψ−(2)− ψ+(2)ψ−(1))[α(1)α(2)]

∝ (sin(φ1) cos(φ2)− sin(φ2) cos(φ1)[α(1)α(2)]

∝ (e−iφ1eiφ2 − e−iφ2eiφ1)[α(1)α(2)]

Or some similar form based on which order you want to write it in. The
difference in order would acrue a minus sign, and would be lost upon squaring
for densities.
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