Make sure you show all your work and justify your answers in order to get full credit.

Problem 1 - Thermal expansion (20 pts)

An alcohol thermometer is made of a cylindrical tube of inner diameter d_{0} and a bulb of volume V_{0} at room temperature (T_{0}). The volumetric coefficients of thermal expansion are $\beta_{a l}$ and β_{g} for the alcohol and glass respectively, with $\beta_{a l} \gg \beta_{g}$. Assume that the thickness of the Pyrex glass is negligible.
a- If the volume of the bulb is much bigger than that of the tube, determine the change in volume of the inside of the thermometer when the temperature is increased from T_{0} to T.
b- Determine the change in volume of the alcohol between the same temperatures.
c- What is the change in height of the column of alcohol between T_{0} to T ?
d- What is the change in height of the column of alcohol between the same temperatures if the change in volume of the tube cannot be neglected?

Figure 1

Problem 2 - Equipartition of energy \& Conductive heat transfer (20 pts)

First part: Equipartition of energy

Two separate ideal gases of same molecular mass m and maintained at the same temperature T are compared. Assume that $T \in[100 \mathrm{~K} ; 1000 \mathrm{~K}]$. There is 1 mole of gas in each container of same volume V, one is monatomic and the other is diatomic.
a- How many degrees of freedom does each gas molecule have? How does that affect the average translational kinetic energy of each gas molecule?
b- Calculate the average rotational kinetic energy and average internal energy per molecule of each type of gas.

Second part: Conductive heat transfer

In a very schematic view, the Earth can be modeled by a hot inner core, in the form of a sphere of radius R_{c} and constant temperature T_{c}, surrounded by a thick layer (spherical shell) extending from R_{c} to R_{s}, that has thermal conductivity k. The temperature at the Earth's surface, T_{s}, is assumed to be constant, and the outside layer is supposed to be homogeneous. Let r be the radial distance from the center of the Earth.
c- What are the assumptions you can make regarding the rate of conductive heat flow $P(r, t)$? Explain your reasoning.
d- Under the previous assumptions, calculate the temperature profile $T(r)$ throughout the outside layer of the Earth.

Figure 2

Problem 3- Heat engine (20 pts)

An ideal diatomic gas containing an unknown number of moles is used as the working substance of a heat engine operating according to the following cycle.
All answers should be in terms of $V_{a,}, V_{b}, P_{a}, T_{a}$.
a- Explain why the cycle represented on the PV diagram is that of a heat engine. Calculate the pressure at points b and c, as well as the temperature at point c.
b- Calculate the net work done by the gas over one full cycle.
c- Identify the process(es) resulting in a heat input and calculate $Q_{i n}$.
d- Determine the engine's efficiency and compare it with the efficiency of an ideal engine operating between T_{a} and T_{c} by calculating the ratio of the two efficiencies.

Figure 3

Problem 4 - Calorimetry \& Entropy (20 pts)

A block of silicon of mass $m_{S i}$, specific heat $C_{S i}$ and initial temperature $T_{S i}$ is immersed in liquid mercury (mass m_{Hg}, specific heat C_{Hg}) at initial temperature T_{Hg} in a Styrofoam container.
a- Explain, using the concept of thermodynamic equilibrium, why a thermodynamic process that involves 2 objects having different temperatures that are put in thermal contact with each other is not reversible.
b- Calculate the final temperature $\left(T_{f}\right)$ of the system.
c- Calculate the total entropy change of the system \{silicon + mercury\} as it evolves from the initial situation to the thermodynamic equilibrium.
d- What sign do you expect for this entropy change? Explain.

Problem 5-Electrostatics (20 pts)

Two parallel circular rings of same radius R are separated by a distance 2ℓ along the x axis. The rings carry opposite uniform charge distributions, λ and $-\lambda(\lambda>0)$.
a- Calculate the electric field $\vec{E}(O)$ at the center.
b- Calculate the electric field $\vec{E}(x)$ at any point on the symmetry axis.
c- Determine the asymptotic expansion of $E(x)$ for large x.
d- Graph the function $E(x)$ that was calculated in part (c).

Figure 4

$$
\begin{gathered}
\Delta l=\alpha l_{0} \Delta T \\
\Delta V=\beta V_{0} \Delta T
\end{gathered}
$$

$$
P V=N k T=n R T
$$

$$
\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T
$$

$$
E_{i n t}=\frac{d}{2} N k T
$$

$$
Q=m c \Delta T=n C \Delta T
$$

$Q=m L$ (For a phase transition)

$$
\begin{gathered}
\Delta E_{\text {int }}=Q-W \\
d E_{\text {int }}=d Q-P d V \\
W=\int P d V
\end{gathered}
$$

$$
C_{P}-C_{V}=R=N_{A} k
$$

$P V^{\gamma}=$ const. (For a reversible adiabatic process)

$$
\begin{gathered}
\gamma=\frac{C_{P}}{C_{V}}=\frac{d+2}{d} \\
C_{V}=\frac{d}{2} R \\
\frac{d Q}{d t}=-k A \frac{d T}{d x} \\
e=\frac{W_{n e t}}{Q_{i n}} \\
e_{\text {ideal }}=1-\frac{T_{L}}{T_{H}}
\end{gathered}
$$

$\Delta S=\int \frac{d Q}{T}$ (For reversible processes)

$$
d Q=T d S
$$

$\Delta S_{s y s t}+\Delta S_{\text {env }}>0$ (For irreversible processes)

$$
\oint d E=\oint d S=0
$$

$$
\begin{gathered}
\vec{F}=\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0} r^{2}} \hat{r}=\frac{k Q_{1} Q_{2}}{r^{2}} \hat{r} \\
\vec{F}=Q \vec{E} \\
d \vec{E}=\frac{d Q}{4 \pi \epsilon_{0} r^{2}} \hat{r}=\frac{k d Q}{r^{2}} \hat{r} \\
\lambda=\frac{d Q}{d l} \quad \sigma=\frac{d Q}{d A} \quad \rho=\frac{d Q}{d V}
\end{gathered}
$$

$$
\begin{aligned}
& \overline{g(v)}=\int_{0}^{\infty} g(v) \frac{f(v)}{N} d v \\
& \text { (} f(v) \text { a speed distribution) } \\
& \int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}} \\
& \int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{(2 n)!}{n!2^{2 n+1}} \sqrt{\frac{\pi}{a^{2 n+1}}} \\
& \int_{0}^{\infty} x^{2 n+1} e^{-a x^{2}} d x=\frac{n!}{2 a^{n+1}} \\
& \int\left(1+x^{2}\right)^{-1 / 2} d x=\ln \left(x+\sqrt{1+x^{2}}\right) \\
& \int\left(1+x^{2}\right)^{-1} d x=\arctan (x) \\
& \int\left(1+x^{2}\right)^{-3 / 2} d x=\frac{x}{\sqrt{1+x^{2}}} \\
& \int \frac{x}{1+x^{2}} d x=\frac{1}{2} \ln \left(1+x^{2}\right) \\
& \int \frac{1}{\cos (x)} d x=\ln \left(\left|\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right|\right) \\
& \int \frac{1}{\sin (x)} d x=\ln \left(\left|\tan \left(\frac{x}{2}\right)\right|\right) \\
& \sin (x) \approx x \\
& \cos (x) \approx 1-\frac{x^{2}}{2} \\
& e^{x} \approx 1+x+\frac{x^{2}}{2} \\
& (1+x)^{\alpha} \approx 1+\alpha x+\frac{(\alpha-1) \alpha}{2} x^{2} \\
& \ln (1+x) \approx x-\frac{x^{2}}{2} \\
& \sin (2 x)=2 \sin (x) \cos (x) \\
& \cos (2 x)=2 \cos ^{2}(x)-1 \\
& \sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b) \\
& \cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b) \\
& 1+\cot ^{2}(x)=\csc ^{2}(x) \\
& 1+\tan ^{2}(x)=\sec ^{2}(x)
\end{aligned}
$$

