
Problem 1

a) Since the volume of the tube is negligible, we only need to calculate the expansion of
the bulb. Almost directly from the formula sheet,

∆Vg = βgV0(T − T0).

b) Again we neglect whatever volume of alcohol is in the tube, so

∆Val = βalV0(T − T0).

c) Because βal ≫ βg, the expansion of the thermometer can be ignored. Using the result
from part (b) and simple geometry,

∆Val =
πd2

4
∆h = βalV0(T − T0).

The desired change in the height of the alcohol column is therefore given by,

∆h = βalV0(T − T0)
4

πd2
.

d) When the volume of alcohol in the thermometer can’t be ignored, this volume also
expands by

∆V = βal
πd2

4
h0∆T

and the total height change becomes

∆h = βal

(

4

πd2
V0 + h0

)

(T − T0).



Problem 2

a) The monatomic gas has d = 3, while the diatomic gases have d = 5. The average

translational kinetic energy is given by 3
2 kBT for both gases.

b) The monatomic gas has no rotational kinetic energy, and the internal energy per parti-

cle of the gas is 3
2 kBT. The average rotational kinetic energy of the diatomic gas is kBT

per particle, while the total internal energy is 3
2 kBT per particle.

c) For this class, we assume that the temperature is independent of time. The most ob-
vious consequence is that the heat flow is not changing in time, so P(r, t) = P(r).
Furthermore, if the temperature is constant in time the total heat into a slice dr of the
Earth must be zero, i.e. dP/dr = 0. Thus the rate of heat flow is also independent of r.

d) Our general formula for the rate of heat flow is,

P(r, t) = −kA
dT

dx
Specifically for a sphere, this becomes

P(r, t) = −k(4πr2)
dT

dr

As we argued in part (c), P(r, t) is a constant so we can use separation of variables

dT ∝
dr

r2

which implies that T(r) = A
r + B where A and B are determined by the boundary

conditions. In this case, we need

T(Rc) = Tc =
A

Rc
+ B

T(Rs) = Ts =
A

Rs
+ B

Solving these equations,

A =
RsRc

Rs − Rc
(Tc − Ts)

B =
RsTs − RcTc

Rs − Rc
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1 Problem 3

a) Since the process from point a to b is isothermal, we can use the fact that
PV = const. to find the pressure at point b:

Pb =
PaVa

Vb

. (1.1)

Since the process from point c to a is adiabatic we can use the fact that
PV γ = const. to find the pressure at point c:

Pc =
PaV

γ
a

V
γ
b

, (1.2)

and the ideal gas law tells us that

Tc =
TaV

γ−1
a

V
γ−1
b

. (1.3)

b) The work done from a to b is

Wab =

∫ Vb

Va

PadV (1.4)

=

∫ Vb

Va

NKTa
dV

V
(1.5)

= NKTaln (
Vb

Va
) (1.6)

= PaValn (
Vb

Va
). (1.7)

There is no work done on the path of b to c because the volume is
constant. The work for the adiabatic expansion from c to a is found from
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the first law of thermodynamics which states that dE = dQ − PdV . Since
no heat is released, dE = −W , the work is minus the change in internal
energy.

Wca = −
5

2
NK(Ta − Tc) (1.8)

= −
5

2
NK(Ta − Ta(

Va

Vb

)γ−1) (1.9)

= −
5

2
PaVa(1− (

Va

Vb

)γ−1), (1.10)

where the last two steps were made by substituting the value for Tc, found
in equation 2, and by considering the ideal gas law.

Hence the total work done during the cycle is

Wnet = PaValn (
Vb

Va
)−

5

2
PaVa(1− (

Va

Vb

)γ−1) (1.11)

c)Heat is going into the system only on the path c to b. This is because
during an adiabatic process, c to a, there is no heat flow and the isothermal
process, a to b, releases heat in order to maintain constant temperature
during contraction. Since there is constant volume, no work is being done
and the flow of heat is equal to the change in internal energy, dE = dQ.
Along that path the heat going into the system is

Qcb = △E (1.12)

=
5

2
NK((Tc − Tb) (1.13)

=
5

2
NK((Tc − Ta) (1.14)

=
5

2
NKTa((

Va

Vb

)γ−1 − 1) (1.15)

=
5

2
PaVa((

Va

Vb

)γ−1 − 1) (1.16)

d)The efficiency of this engine is
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e =
W

Qin
(1.17)

=
PaValn (

Vb

Va
)− 5

2PaVa(1− (Va

Vb
)γ−1)

5
2PaVa((

Va

Vb
)γ−1 − 1)

(1.18)

=
ln( Vb

Va
)− 5

2(1− (Va

Vb
)γ−1)

5
2((

Va

Vb
)γ−1 − 1)

(1.19)

when we compare this to the Carnot engine, We see that

ecarnot

esystem
= 1−

Tc

Ta
·

5
2(

Va

Vb
)γ−1 − 1

ln( Vb

Va
)− 5

2(1− (Va

Vb
)γ−1)

(1.20)

= 1− (
Va

Vb

)γ−1 ·

5
2((

Va

Vb
)γ−1 − 1)

ln( Vb

Va
)− 5

2(1− (Va

Vb
)γ−1)

(1.21)

= −

5
2((

Va

Vb
)γ−1 − 1)2

ln( Vb

Va
)− 5

2(1− (Va

Vb
)γ−1)

(1.22)

=
1

2

5
ln(

Vb
Va

)

((Va
Vb

)γ−1
−1)2

+ 1
(1−(Va

Vb
)γ−1)

(1.23)

2 Problem 4

a) The second law of thermodynamics tells us that ∆S≥0. When two object
are in contact the hotter object will spontaneously give heat to the colder
object. However, The spontaneous flow of heat from cold to hot would
create a negative change in entropy and so the two objects returning to
their original temperatures is not possible. Another way to answer this
is by noting that two objects cannot be in thermodynamic equilibrium if
they have different temperatures so the process of heat exchange cannot be
reversible.

b)By using the fact that Qsi = −Qhg we see that the final temperature
is

TF =
mHgcHgTHg +mSicSiTSi

mHgcHg +mSicSi
(2.1)

c) From dQ = TdS , we can see that the change in entropy is
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dS =

∫
dQ

T
(2.2)

= mSicSi

∫
dT

T
+mHgcHg

∫
dT

T
(2.3)

= mSicSiln(
TF

TSi

) +mHgcHgln(
TF

THg

) (2.4)

d) The object that is loosing heat will decrease in entropy the object
gaining the heat will increase in entropy. I expect the two objects in thermal
contact to transfer heat in a way that will allow the overall entropy to
increase. There is more ”order” when there is a hotter object and a colder
object than if the two objects were in thermal equilibrium.
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a)

First we will calculate the electric field due to the ring assuming the center of the ring is at x = 0. (this is
almost identical to the derivation on page 572 of the book). We will later shift the result to get the electric
field due to the ring being at other positions.
Since there is radial symmetry all the components of the electric field tranverse to x from an element dq
on the ring cancel. This is because at any point on the ring, the opposite point of the ring contributes the
opposite way. Thus, we only need to find the electric field in the x direction:
The electric field is:

~E =

∫

dq

4πǫ0s2
ŝ =

∫

dqx

4πǫ0s3
x̂+

∫

dqy

4πǫ0s3
ŷ +

∫

dqz

4πǫ0s3
ẑ

So the x-component is (if you didn’t make a symmetry argument to select out the x component, you would
see that the other integrals evaluate to 0):

Ex =

∫

dqx

4πǫ0s3

Note that here, s is the distance from the element dq on the ring to the point where we want to find the
electric field (where the point charge is). By geometry we get that:

s2 = R2 + x2

We can rewrite dq = λdl.
Now, the only thing that is changing in dl is the angle, since it is always at a fixed distance. Thus, noting
that l = Rθ along an arc, I get that dl = Rdθ.

Ex =

∫

λdlx

4πǫ0(R2 + x2)3/2

=

∫

2π

0

λRdθx

4πǫ0(R2 + x2)3/2

=
λ2πRx

4πǫ0(R2 + x2)3/2

=
λRx

2ǫ0(R2 + x2)3/2

To get the electric field from a ring at a position that is not x = 0, you can make the replacement x → x−a,
which shifts to the right by a. The total electric field from both rings is, then, by superposition

Ex =
λR

2ǫ0

(

−

x− l

(R2 + (x− l)2)3/2
+

x+ l

(R2 + (x+ l)2)3/2

)

Plugging in x = 0 gives

Ex =
λ

2ǫ0

(

l

(R2 + l2)3/2
+

l

(R2 + l2)3/2

)

=
λl

ǫ0(R2 + l2)3/2

b)

From part a)

Ex =
λR

2ǫ0

(

−

x− l

(R2 + (x− l)2)3/2
+

x+ l

(R2 + (x+ l)2)3/2

)
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c)

Look at the limit as x → ∞.

Ex =
λR

2ǫ0

(

−(x− l)(R2 + x2 + l2 − 2lx)−3/2 + (x+ l)(R2 + x2 + l2 + 2lx)−3/2
)

=
λR

2ǫ0

(

−

(x− l)

x3

(

R2

x2
+ 1 +

l2

x2
−

2l

x

)

−3/2

+
(x+ l)

x3
(
R2

x2
+ 1 +

l2

x2
+

2l

x
)−3/2

)

≈

λR

2ǫ0

(

−

(x− l)

x3

(

1−
2l

x

)

−3/2

+
(x+ l)

x3

(

1 +
2l

x

)

−3/2
)

≈

λR

2ǫ0

(

−

(x− l)

x3

(

1 +
3l

x

)

+
(x+ l)

x3

(

1−
3l

x

))

≈

λR

2ǫ0

(

−

x− l

x3
+

x+ l

x3
−

3l

x3
−

3l

x3

)

= −

2λRl

ǫ0x3

In the second line I threw away the R2 terms, since if R
x is small, then R2

x2 is even smaller. In the third line
I used the expansion (1 + z)α ≈ 1 + αz when z is small. In the fourth line I again drop all R2 terms. So we
see that far away, the field scales like x−3.

d)

Note that this plot has l = R/2 to make it plotable but the problem does not specify this
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