University of California, Berkeley Physics

137A Spring 2011

MidTerm Exam II
Maximum score: 100 points

1. (50 points)

At time $\mathrm{t}=0$ a particle in a harmonic oscillator potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$ has a wavefunction $|\psi(t=0)\rangle=|0\rangle+2|1\rangle$, where $|0\rangle$ and $\mid 1>$ are normalized ground and first excited states.
(a) Normalize $|\psi(t=0)\rangle$.
(b) How does the wavefunction evolve with time?
(c) What are the average position and momentum of the particle at $\mathrm{t}=0$?
(d) How do the position and momentum expectation values of the particle change as a function of time?
2. (50 points)

Let's consider a linear molecule composed of three atoms. Quantum mechanically the electron can stay at one atom or tunneling between the adjacent ones. The Hamiltonian of the molecule is then described by
$H=\left(\begin{array}{ccc}E_{0} & -A & 0 \\ -A & E_{0} & -A \\ 0 & -A & E_{0}\end{array}\right)$.
(a) Find the eigenvalues of energy of the system, and the corresponding eigenvectors.
(b) If the electron stays at the first atom at $t=0$, i.e. $|\psi(t=0)\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. How will the wavefunction evolve as a function of time?

