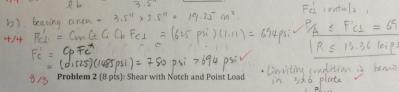
General Notes:

- · You are allowed to bring the NDS, the NDS Supplement and one note sheet
- All loading combinations should follow ASD

 For a member to be acceptable, its demand/capacity ratio must be equal to or less than 1.00; its interaction must be equal to or less than 1.00
- Do not reduce any live loads unless asked to
- Assume $C_m = C_t = C_L = C_{fu} = C_i = 1.0$ unless noted otherwise
- Box, cloud, or highlight final answers
- When making assumptions, clearly state what they are
- Unreasonable or overly conservative assumptions may not receive credit

	Score	Maximum
Problem 1	8	8
Problem 2	8	8
Problem 3	10	10
Problem 4	8	8
Problem 5	8	8
Problem 6	7	8
Totals	49	50

Good luck!


8/8 Problem 1 (8 pts): Post Bearing

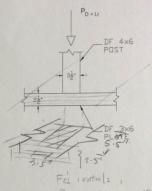
Given:

 $Load = D + L_r$ Post = $4x6 (3.5" \times 5.5")$ $F_c^* = 1,485 \text{ psi}$ $C_p = 0.525$ $F_{c\perp} = 625 \text{ psi}$

- a) What is the value of Cb?
- b) What is the maximum allowable load P? What is the limiting condition?

$$4/4$$
 Cb = $\frac{2b+3/\xi^{\nu}}{2b} = \frac{3.5^{11}+3/\xi^{\nu}}{3.5^{**}} = 1.11$

Given: Load = D + LBeam = $6x16 (5.5" \times 15")$ F_v'= 170 psi

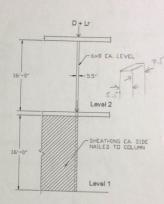

4/4 a) What is the reduction factor for P?

4/4 b) What is the maximum allowable load

a)
$$\frac{1}{d} = \frac{6}{15} = 0.4$$

b)
$$V_i' = \begin{bmatrix} \frac{2}{5} & \frac{1}{5} & \frac{$$

Vmax = 0,49 < 5.41 kips



· limiting condition is bearing feature in 3x6 plate.

10/10 Problem 3 (10 pts): Two-Story Column Stack

Species = DF #1 Column = 6x8 (5.5" x 7.5"); Assume separate pieces at both levels Ke = 1.0 F_c* = 1,000 psi E_{min} = 580,000 psi

- 2/2 a) What is the controlling l_e/d at Level 1?
- 2/2 b) What is the controlling l_e/d at Level 2?
- 2/2 c) Assume the controlling load at Level 2 is (D + L_7) = 20,000 lbs. and C_p = 0.289. What is the column D/C ratio at Level 2?
- 2/2 d) What is the value of F_{ce} at Level 2 for the load case (D+L_e)?

2/2e) Assume the column is continuous over the two stories, giving
$$Ke = 0.80$$
. Now what is the value of F_{ce} at Level 2 for the load case (D+L_e)? How will this affect the final D/C ratio for this column?

 $Ke = 1.0$ due to sheathing in $y = 0.015$. h) $Ke = 1.0$

c) Fc' = CpFc+ = (6.289)(1000 psi) = 289 psi

$$A = (5.5^{\circ})(7.5^{\circ}) = 41.25 \,\text{m}^2$$

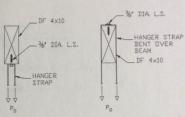
$$f_c = \frac{P}{A} = \frac{20000 \,\text{lb}}{41.25 \,\text{m}^2} = 485 \,\text{psi}$$

$$C = \frac{487 \,\text{psi}}{259 \,\text{psi}} = 1.68 \,\text{7.10} \,\text{N.G.}$$

(34.9)2

e)
$$\frac{de}{d} = \frac{(6.8)(16')(n)}{5.5'} = 27.7$$

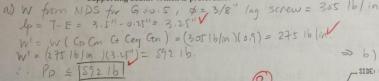
FOR = $\frac{6.871 \text{ Emin}}{(27.9)^{3}} = \frac{(6.12 \text{ psi})}{(27.9)^{3}} = \frac{1612 \text{ psi}}{(27.9)^{3}}$


this will never the value of G and therefore Fé. 1 D/c will decrease as

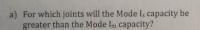
Problem 4 (8 pts): Hanger Strap

Given:

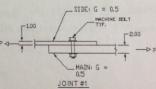
 $Species = DF \#1 (G = 0.50) \\ Hanger tension load = \underline{Dead} \ only \\ Lag Screw = 3/8" \times 6" \\ Thread len. T = 3.5" \\ Tip len. E = 0.25"$

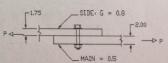


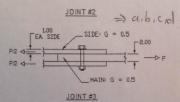
a) For Version I, what is the allowable PD for this connection?


VERSION II

b) What is the difference between Versions 1 & 2 in terms of their effect on the supporting beam? Which is preferable?




Problem 5 (8 pts) Yield Limit Equations & Dowel Bearing

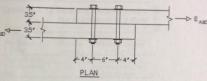

 $\label{eq:model} \begin{array}{l} \text{Mode I}_s = \text{dowel bearing yield in side member} \\ \text{Mode I}_m = \text{dowel bearing yield in main member} \\ \text{Mode II} = \text{rigid body rotation of fastener} \\ \end{array}$

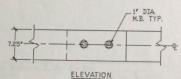
- b) For which joints must Mode II be checked?
- c) Which joint will have the greatest capacity? Why?
- d) Given fastener diameter D = 0.75" and G = 0.80, calculate F_{el} and $F_{e\perp}$

4

Problem 4 b) version 11 chitributes the fuer better along the beam's cross-section and is therefore more preferable. Version I may cause stress concentration at the lay screw Problum 5 Is: Z= Dls Fes Z= Plm Fem a) = Im Sime D, Rd the same, only variation are by Fe. For joint # 1,3, ls = lm while G. = Gs, so Zs = Zm For joint # 2, atthough ls < lm, Fes > Fem since G = 2018 and If \$ 6 0 15 " Fe = 16600 G 1184 , (GB) 184 = 2137 7 195" So for Joint #2, Is made will have greater capacity.

(b) mode II (ngid rotation) should be chedred for single show connections.


It I and #2. c) From #31-aill have the greatest capacity since the capacity & is determined by the weakest yield made because it is a double shear connection its weakest yield made will be stronge rethan the rest of connections Good! d) D=0.77" >0.25", G=0.80. Fell = 11200 G = (11200 10.80) = 8960 psi Fe 1 = 6100 61.45 (D)= 6100 (0.8)1.45 (0.75)= 5097 psi


Problem 6 (8 pts) Truss Chord Splice

Given:

Species = DF #1 Chord = $4x8 (3.5" \times 7.25")$ Type = softwood Tension load = Seismic $F_t = 675 \text{ psi}$ C_f (tension) = 1.2

Spacing requirement

- a) What is the value of C_{Δ} for this connection?
- b) Using the value of $C_{\!\Delta}$ calculated above, what is the allowable tension load for this
- c) If the allowable connection load is taken as 7,250 lbs., what is the D/C ratio for the chord members?
- a) and distance requirement
 - actual = 4"

 - required for $C_0 = 1.0 = 7D = (7)(1") = 7"$ for parellel loading to grain $C_0 = \frac{a^n}{7^n} = 0.57$ Spacing Along Row: $C_0 = 6D 7 4D$
- i. Co = 0,57 b). Z value for \$ = 1" bolts , DF (G=0,50) , Z11=2>60 16. 121=72016 fine is parallel to grain -> use 711
 - Z'= Z(6 cm (4 (q Ca (eg (di Ctn) = (226016) (1.6) (0,57) = 2061 16 There are 2 bolts -> Pallonable < (2061 1h) (24= 412216. V
- () $A_9 = (3.5")(7.45") = 25.4 \text{ m}^2 \cdot (A_n = A_9 (d+1/6")t = 25.4" (17/6)(3.5")$ $ft = \frac{1}{4} = \frac{1}{2/68 \text{ m}^2} = 33.4.4 \text{ psi}$ $ft = \frac{1}{4} = \frac{1}{2/68 \text{ m}^2} = 33.4.4 \text{ psi}$
 - H'= H(Co Cm (+ Ci) = (6+5 psi) (1.6)(1.2) = 1296 psi = #= 334 = 10.26 < 1.0 0k