Problem 1

Two solutions are separated by a thin film 0.3 cm thick that can allow diffusion of $\mathrm{HCl}(\mathrm{A})$ and water (B). The concentration of HCl at one side of the film at point z_{1} is $0.004 \mathrm{~mol} / \mathrm{cm}^{3}$ and the concentration of HCl at the other side of the film at point z_{2} is $0.002 \mathrm{~mol} / \mathrm{cm}^{3}$. The total concentration at both points is $0.055 \mathrm{~mol} / \mathrm{cm}^{3}$. The diffusivity of HCl in water in the film is $2.5 * 10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$. Assume steady state.
a) Find an expression for the molar flux of HCl assuming that water does not diffuse. Calculate this flux.
b) Find an expression for the molar fluxes of HCl and water assuming that they are related by $\mathrm{N}_{\mathrm{A}}=-2 \mathrm{~N}_{\mathrm{B}}$. Calculate both fluxes.

Solution

a) We can start with the expression for molar flux:

$$
\begin{align*}
\mathrm{N}_{\mathrm{A}} & =-\mathcal{D}_{\mathrm{AB}} \frac{\mathrm{dc}_{\mathrm{A}}}{d \mathrm{z}}+\mathrm{x}_{\mathrm{A}}\left(\mathrm{~N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}\right) \tag{1}\\
& =-\mathcal{D}_{\mathrm{AB}} \frac{\mathrm{dc}_{\mathrm{A}}}{\mathrm{dz}}+\frac{\mathrm{c}_{\mathrm{A}}}{\mathrm{c}}\left(\mathrm{~N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}\right) . \tag{2}
\end{align*}
$$

As water does not diffuse $N_{B}=0$, and we can rearrange to find an exact expression for N_{A} :

$$
\begin{align*}
& \mathrm{N}_{\mathrm{A}}=-\frac{\mathcal{D}_{\mathrm{AB}}}{1-\mathrm{x}_{\mathrm{A}}} \frac{\mathrm{dc}_{\mathrm{A}}}{\mathrm{dz}}=-\frac{\mathrm{c} \mathcal{D}_{\mathrm{AB}}}{\mathrm{c}-\mathrm{c}_{\mathrm{A}}} \frac{\mathrm{dc}_{\mathrm{A}}}{\mathrm{dz}} \tag{3}\\
& \mathrm{~N}_{\mathrm{A}} \mathrm{dz}=-\frac{\mathrm{c} \mathcal{D}_{\mathrm{AB}}}{\mathrm{c}-\mathrm{c}_{\mathrm{A}}} d c_{\mathrm{A}} . \tag{4}
\end{align*}
$$

As we are assuming steady state, N_{A} is constant and we can integrate the expression from z_{1} to z_{2} and $\mathrm{c}_{\mathrm{A} 1}$ to $\mathrm{c}_{\mathrm{A} 2}$:

$$
\begin{aligned}
\int_{\mathrm{z}_{1}}^{\mathrm{z}_{2}} \mathrm{~N}_{\mathrm{A}} \mathrm{dz} & =\int_{\mathrm{c}_{\mathrm{A} 1}}^{\mathrm{c}_{\mathrm{A} 2}}-\frac{\mathrm{c} \mathcal{D}_{\mathrm{AB}}}{\mathrm{c}-\mathrm{c}_{\mathrm{A}}} d \mathrm{~d}_{\mathrm{A}} \\
\mathrm{~N}_{\mathrm{A}}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) & =\mathrm{c} \mathcal{D}_{\mathrm{AB}} \ln \left(\frac{\mathrm{c}-\mathrm{c}_{\mathrm{A} 2}}{\mathrm{c}-\mathrm{c}_{\mathrm{A} 1}}\right)=\mathrm{c} \mathcal{D}_{\mathrm{AB}} \ln \left(\frac{1-\mathrm{x}_{\mathrm{A} 2}}{1-\mathrm{x}_{\mathrm{A} 1}}\right),
\end{aligned}
$$

which gives the final expression as:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{A}}=\frac{\mathrm{c} \mathcal{D}_{\mathrm{AB}}}{\mathrm{z}_{2}-\mathrm{z}_{1}} \ln \left(\frac{\mathrm{c}-\mathrm{c}_{\mathrm{A} 2}}{\mathrm{c}-\mathrm{c}_{\mathrm{A} 1}}\right)=\frac{\mathrm{c} \mathcal{D}_{\mathrm{AB}}}{\mathrm{z}_{2}-\mathrm{z}_{1}} \ln \left(\frac{1-\mathrm{x}_{\mathrm{A} 2}}{1-\mathrm{x}_{\mathrm{A} 1}}\right) . \tag{5}
\end{equation*}
$$

Plugging in the parameters of the problem:
$\mathrm{c}=0.055 \mathrm{~mol} / \mathrm{cm}^{3}$
$\mathrm{x}_{\mathrm{A} 2}=\mathrm{c}_{\mathrm{A} 2} / \mathrm{c}=0.002 / 0.055=0.0364$
$\mathrm{x}_{\mathrm{A} 1}=\mathrm{c}_{\mathrm{A} 1} / \mathrm{c}=0.004 / 0.055=0.0727$
$\mathrm{z}_{2}-\mathrm{z}_{1}=0.3 \mathrm{~cm}$
$\mathcal{D}_{\mathrm{AB}}=2.5 * 10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$

$$
\begin{align*}
\mathrm{N}_{\mathrm{A}} & =\frac{\mathrm{c} \mathcal{D}_{\mathrm{AB}}}{\mathrm{z}_{2}-\mathrm{z}_{1}} \ln \left(\frac{1-\mathrm{x}_{\mathrm{A} 2}}{1-\mathrm{x}_{\mathrm{A} 1}}\right) \\
& =\frac{0.055 * 2.5 * 10^{-5}}{0.3} \ln \left(\frac{1-0.0364}{1-0.0727}\right) \\
& =1.76 * 10^{-7} \mathrm{~mol} / \mathrm{cm}^{2} \mathrm{~s} \tag{6}
\end{align*}
$$

b) As before, we can start with the expression for molar flux using either (1) or (2). The problem statement tells us that $N_{A}=-2 N_{B}$, so we can plug in $N_{B}=-1 / 2 N_{A}$ and rearrange:

$$
\begin{align*}
\mathrm{N}_{\mathrm{A}} & =-\mathcal{D}_{\mathrm{AB}} \frac{\mathrm{dc}_{\mathrm{A}}}{d \mathrm{z}}+\mathrm{x}_{\mathrm{A}}\left(\mathrm{~N}_{\mathrm{A}}-\frac{1}{2} \mathrm{~N}_{\mathrm{A}}\right)=-\mathcal{D}_{\mathrm{AB}} \frac{\mathrm{dc}_{\mathrm{A}}}{\mathrm{dz}}+\frac{\mathrm{x}_{\mathrm{A}}}{2} \mathrm{~N}_{\mathrm{A}} \tag{7}\\
& =-\frac{\mathcal{D}_{\mathrm{AB}}}{1-\frac{\mathrm{x}_{\mathrm{A}}}{2}} \frac{\mathrm{dc}_{\mathrm{A}}}{\mathrm{dz}}=-\frac{\mathrm{c}_{\mathrm{AB}}}{\mathrm{c}-\frac{\mathrm{c}_{\mathrm{A}}}{2}} \frac{\mathrm{dc}_{\mathrm{A}}}{\mathrm{dz}} \tag{8}\\
\mathrm{~N}_{\mathrm{A}} \mathrm{dz} & =-\frac{c \mathcal{D}_{\mathrm{AB}}}{\mathrm{c}-\frac{\mathrm{c}_{\mathrm{A}}}{2}} \mathrm{dc}_{\mathrm{A}} . \tag{9}
\end{align*}
$$

As we are assuming steady state N_{A} is constant and we can integrate the expression from z_{1} to z_{2} and $\mathrm{c}_{\mathrm{A} 1}$ to $\mathrm{c}_{\mathrm{A} 2}$:

$$
\begin{aligned}
\int_{\mathrm{z}_{1}}^{\mathrm{z}_{2}} \mathrm{~N}_{\mathrm{A}} \mathrm{dz} & =\int_{\mathrm{c}_{\mathrm{A} 1}}^{\mathrm{c}_{\mathrm{A} 2}}-\frac{\mathrm{c} \mathcal{D}_{\mathrm{AB}}}{\mathrm{c}-\frac{\mathrm{c}_{\mathrm{A}}}{2}} d c_{\mathrm{A}} \\
\mathrm{~N}_{\mathrm{A}}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) & =2 \mathrm{c}_{\mathrm{AB}} \ln \left(\frac{\mathrm{c}-\frac{\mathrm{c}_{\mathrm{A} 2}}{2}}{\mathrm{c}-\frac{\mathrm{c}_{\mathrm{A} 1}}{2}}\right)=2 \mathrm{c}_{\mathrm{AB}} \ln \left(\frac{1-\frac{\mathrm{x}_{\mathrm{A} 2}}{2}}{1-\frac{\mathrm{x}_{\mathrm{A} 1}}{2}}\right)=2 \mathrm{c}_{\mathrm{AB}} \ln \left(\frac{2-\mathrm{x}_{\mathrm{A} 2}}{2-\mathrm{x}_{\mathrm{A} 1}}\right),
\end{aligned}
$$

which gives the final expressions as:

$$
\begin{align*}
& \mathrm{N}_{\mathrm{A}}=\frac{2 \mathrm{c} \mathcal{D}_{\mathrm{AB}}}{\mathrm{z}_{2}-\mathrm{z}_{1}} \ln \left(\frac{2 \mathrm{c}-\mathrm{c}_{\mathrm{A} 2}}{2 \mathrm{c}-\mathrm{c}_{\mathrm{A} 1}}\right)=\frac{2 \mathrm{c} \mathcal{D}_{\mathrm{AB}}}{\mathrm{z}_{2}-\mathrm{z}_{1}} \ln \left(\frac{2-\mathrm{x}_{\mathrm{A} 2}}{2-\mathrm{x}_{\mathrm{A} 1}}\right) \tag{10}\\
& \mathrm{N}_{\mathrm{B}}=-\frac{\mathrm{N}_{\mathrm{A}}}{2}=-\frac{\mathrm{c} \mathcal{D}_{\mathrm{AB}}}{\mathrm{z}_{2}-\mathrm{z}_{1}} \ln \left(\frac{2-\mathrm{x}_{\mathrm{A} 2}}{2-\mathrm{x}_{\mathrm{A} 1}}\right) . \tag{11}
\end{align*}
$$

Plugging in the parameters of the problem:
$\mathrm{c}=0.055 \mathrm{~mol} / \mathrm{cm}^{3}$
$\mathrm{x}_{\mathrm{A} 2}=\mathrm{c}_{\mathrm{A} 2} / \mathrm{c}=0.002 / 0.055=0.0364$
$\mathrm{x}_{\mathrm{A} 1}=\mathrm{c}_{\mathrm{A} 1} / \mathrm{c}=0.004 / 0.055=0.0727$
$\mathrm{z}_{2}-\mathrm{z}_{1}=0.3 \mathrm{~cm}$
$\mathcal{D}_{\mathrm{AB}}=2.5 * 10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$

$$
\begin{align*}
& \mathrm{N}_{\mathrm{A}}=\frac{2 \mathrm{c} \mathcal{D}_{\mathrm{AB}}}{\mathrm{z}_{2}-\mathrm{z}_{1}} \ln \left(\frac{2-\mathrm{x}_{\mathrm{A} 2}}{2-\mathrm{x}_{\mathrm{A} 1}}\right)=\frac{2 * 0.055 * 2.5 * 10^{-5}}{0.3} \ln \left(\frac{2-0.0364}{2-0.0727}\right) \\
& \mathrm{N}_{\mathrm{A}}=1.71 * 10^{-7} \mathrm{~mol} / \mathrm{cm}^{2} \mathrm{~s} \tag{12}\\
& \mathrm{~N}_{\mathrm{B}}=-\frac{\mathrm{N}_{\mathrm{A}}}{2}=-8.55 * 10^{-8} \mathrm{~mol} / \mathrm{cm}^{2} \mathrm{~s} \tag{13}
\end{align*}
$$

Problem 2 - PART A [1 5pts]
If. Start with shell Balance

$$
\frac{d}{d r} \tilde{N}_{A}=0=\nabla N_{A} \leftrightarrow \text { constant }
$$

OR if younsed conservation of species eq n

$$
\text { D) }\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial C_{A}}{\partial r}\right)\right]=0=\frac{d}{d r}\left(r^{2} \frac{d C_{A}}{d r}\right)
$$

* Steady state $\quad x$ no $\theta, \theta \phi$ component
* no bulk flow

$$
\begin{aligned}
& N_{A}=-A \pi r^{2} D \frac{d C_{A}}{d r} \\
& \frac{d}{d r} N_{A}=D \cdot \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial C_{A}}{\partial r}\right)=0 \\
& \frac{\partial}{\partial r}\left(r^{2} \frac{\partial C_{A}}{\partial r}\right)=0
\end{aligned}
$$

Bound dry conditions (1) $r=R, C_{A}=C_{A R}$
(2) $r=\infty, C_{A}=0$

$$
\begin{aligned}
r^{2} \frac{d C_{A}}{d r} & =A_{1} \\
\frac{d C_{A}}{d r} & =\frac{A_{1}}{r^{2}} \quad \Rightarrow \quad C_{A}=A_{2}-\frac{A_{1}}{r}
\end{aligned}
$$

Evaluating at $r=R \Rightarrow A_{1}=-C_{A R} \cdot R$

$$
\text { at } r=\infty \Rightarrow A_{2}=0
$$

Concentration :- $C_{A}=\operatorname{Can}_{\text {Prof }} \frac{R}{r}$. profile

If start with flux eq (NDT RECOMMENDED)

$$
N_{A}=-\infty \frac{d C_{A}}{d r}+\frac{C_{A}}{C}\left(N_{A}+\nu_{B}\right)_{0}
$$

∂R

OR

$$
N_{A}=-D C \frac{d y_{A}}{d r}+y_{A}\left(N_{A}+\sqrt{B}\right)^{0}
$$

if assuming stagnant film $N_{3}=0$

$$
N_{A}=\frac{-D}{\left(1-\frac{C_{A}}{C}\right)} \frac{\partial C_{A}}{\partial r}=\frac{-D C}{\left(1-X_{A}\right)} \frac{\partial X_{A}}{\partial r}=-\frac{D C}{\left(1-y_{A}\right)} \frac{\partial y_{A}}{\partial r}
$$

$$
\begin{aligned}
& N_{A}=\frac{-D}{\left(1-\frac{C_{A}}{C}\right)} \frac{d C A}{d r} \\
& \text { Bowndary cond: } \\
& \pi \rightarrow r \\
& r=R, \quad C_{A}=C_{A R} \\
& \int_{R}^{\infty} N_{A} \cdot d r=\int_{C_{A_{R}}}^{C_{A}} \frac{-D}{\left(1-\frac{C_{A}}{C}\right)} d C_{A} \\
& r=\infty, C_{A}=0 \\
& \left.N_{A} \cdot r\right|_{R} ^{\infty \infty}=N_{A}(r-R)=-\left.D \ln \left(1-\frac{C_{A}}{C}\right)\right|_{C_{A R}} ^{C_{A}} \\
& N_{A}(\infty-R)=-D \ln \left[\frac{1-\frac{C A}{C D}}{1-\frac{C_{A R}}{C}}\right] \\
& N_{A}(\infty-R)=-\infty \ln \left[\frac{1}{1-\frac{C+R}{C}}\right] \\
& \exp \left[\frac{-N_{A}}{D}\left(\hat{\gamma}^{0}-R\right)\right]=\exp \left[\frac{N_{A} \cdot R}{D}\right]=\frac{1}{1-C_{A R} / C} \\
& 1-\frac{C_{A R}}{C}=\exp \left(-\frac{N_{A} \cdot R}{D}\right) \\
& N_{A} \operatorname{constant}=N_{A}=\frac{-D}{R} \ln \left[1-\frac{C_{A R}}{C}\right] \\
& N_{A}=-\frac{D C_{A R}}{R}
\end{aligned}
$$

To find $C_{A} \rightarrow N_{A}=\angle D X \frac{d C_{A}}{d r}=\frac{A D C_{A R}}{R}$ doandindefinte integral $\Rightarrow \int d C_{A}=\int \frac{C_{A R}}{\Gamma} d r \Rightarrow\left(A(r)=\frac{(M R}{r}\right.$

Problem 2 Part B Method 1 (zopts)
use $C_{A}=C_{A R} \frac{R}{r}$ from part A
Flux $N_{A} @ r=R \quad-\left.\infty \frac{d C_{A}}{d r}\right|_{R}=-\left.D C_{A R} R \frac{-1}{r^{2}}\right|_{r=R}$

$$
N_{A}=C_{A R} \notin \frac{1}{R}
$$

Mass Balance

$$
\begin{aligned}
d M & =-N \cdot A \cdot d t \\
\rho d V & =-N \cdot A \cdot d t \\
\rho \frac{4}{3} \pi d r^{3} & =-C_{A R} \otimes \frac{1}{r} 4 \pi r^{2} d t
\end{aligned}
$$

mass balance
substitute simplify
$\rho_{0} 4 \pi r^{2} d r=-C_{A R} \oplus 4 t r r d t$ cancelling

$$
\int_{R}^{0} \rho r d r=\int_{0}^{t f}-C_{A R} \varnothing d t
$$ integration

$$
\rho \frac{R^{2}}{2}=C_{A R} \doteq t_{f}
$$

$$
t_{f}=\frac{\rho R^{2}}{2 C_{A R} D}
$$

final analytical expression

$$
\begin{aligned}
& C_{A R}=\frac{74}{101000} \cdot \frac{101000}{8.314 \cdot 318}=2.8 \times 10^{-2} \frac{\mathrm{~mol}}{\mathrm{~m}^{3}} \quad \text { from } C=\frac{P}{R T} \\
& t_{f}=\frac{0.001^{2} \cdot 8600}{2.2 .8 \times 10^{-2} \cdot 6.82 \times 10^{-6}}=2.219 \times 10^{4} \text { seconds } \\
& \begin{array}{c}
2.2 e^{4} \text { seconds } \\
6.2 \text { hours }
\end{array} \quad \begin{array}{c}
\text { final numerical } \\
\text { answer }
\end{array}
\end{aligned}
$$

Problem 2 Part B Method 2
Flux $\quad N_{A}=-c D \frac{d X_{A}}{d r}+X_{A}\left(N_{A}+X_{B}^{0}\right)$

$$
\begin{aligned}
& N_{A}=-\frac{P}{R T} \mathscr{D} \frac{d P}{d r} \frac{1}{P}+\frac{P_{A}}{P} N_{A} \\
& N_{A} d r=\frac{-D}{R T} \frac{d P_{A}}{\left(1-P_{A} / P\right)} \quad N_{A}=\frac{N_{A}}{4 \pi r^{2}} \quad \begin{array}{c}
\text { average } \\
\text { flux }
\end{array}
\end{aligned}
$$

$$
\int_{r_{1}}^{r_{2}} \frac{\overline{N_{A}}}{4 \pi r^{2}} d r=\int_{0}^{P_{A}^{\text {va }}} \frac{-D d P_{A}}{R T\left(1-P_{A} / P\right)} \text { inter }
$$

$$
\text { B.C. } r=r_{1} \quad P_{A}=P_{A} \text { val }
$$

$$
\frac{\bar{N}_{A}}{4 \pi}\left(\frac{1}{r_{1}}-\frac{1 \bar{x}_{2}}{x_{2}}\right)=\frac{-D}{R T}(-P) \ln \left(1-P_{A} / P\right)
$$

$$
\left(r_{2} \rightarrow \infty\right)
$$

$$
\left(r_{1}=R\right)^{\prime}
$$

$$
N_{A}=\frac{\varnothing P}{R T r_{1}} \ln \left(1-P_{A} / P\right)
$$

set equal to $-\rho \frac{d r}{d t}$

$$
\begin{aligned}
& \int_{0}^{t f} \frac{\partial P}{R T} \ln \left(1-P_{A} / P\right) d t=\int_{R}^{0}-\rho r d r \quad \text { integrate } \\
& t_{f} \frac{\partial P}{R T} \ln \left(1-P_{A} / P\right)=\frac{\rho R^{2}}{2}
\end{aligned}
$$

$$
t_{f}=2.219 \times 10^{4} \mathrm{~s}
$$

2.2 e 4 seconds
final numerical 6.2 hours answer

Problem 3 Part A
assumptions

- diffusion in $z \ll$ convection in z
- steady -state
- flow in $=$ only, Concentration function of r, z

Governing Equation

$$
\begin{aligned}
& v_{z} \frac{\partial C_{O_{2} \text { bod }}}{\partial z}=\oiint_{0_{2} \text { bout }}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C_{O_{2}} \text { good }}{\partial r}\right)\right)+6
\end{aligned}
$$

Boundary Conditions
(1) @ $z=0 \quad C_{0_{2} \text { blood }}=\mathrm{CO}_{2}, 0 \quad$ inlet +3
(2) @ $r=0 \quad \frac{\sum_{0_{2} b \text { bod }}}{2 r}=0$ symmetry +3
(3) @ $r=R \quad N_{Q_{2} \text { bund }}=-k C_{0_{2} \text { bead }}$

$$
\left.\Phi_{0_{2} \text { Hood }} \frac{\partial C_{02 b} \text { bod }}{\partial r}\right|_{r=R}=-\left.k C_{02 b \text { wood }}\right|_{r=R}+3
$$

Problem 3 Part B
(2 Opts)
assumptions

- steady-state
- Concentration function of r only
- no bulk flow inside cell, only diffusion + ran

Goveming Equation

$$
\begin{align*}
& \frac{\partial C_{O_{2}}}{\partial t}+v \cdot \nabla C_{O_{2}}=D_{O_{2}}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial C_{2}}{\partial r}\right)\right]+R_{V} \\
& 0 \text { s.s. } \\
& 0=D_{O_{O_{2}} \text { call }\left[\frac { 1 } { r ^ { 2 } } \frac { \partial } { \partial r } \left(r^{2} \frac{\left.\left.\partial C_{O_{2} \text { cell }}\right)\right]-k C_{O_{2} \text { cell }}}{\partial r}+\right.\right.}=\$
\end{align*}
$$

Boundary Conditions
(1) @ $r=0 \quad \frac{\partial C_{2} \text { cell }}{\partial r}=0$ symmetry +5
(2) @ $r=R$

$$
\begin{aligned}
& \left.N_{\mathrm{O}_{2} \text { cell }}\right|_{r=R}=k_{c}\left(C_{0_{2} \text { toe }}-C_{O_{2} \text { surf. ext. }}\right) \\
& \left.N_{\mathrm{O}_{2} \text { cell }}\right|_{r=R}=k_{c}\left(C_{O_{2} \text { toe }}-\frac{C_{O_{2} \text { cell }}}{K}\right) \\
& \left.\mathbb{A} \frac{\partial C_{O_{2} \text { cell }}}{\partial r}\right|_{r=R}=k_{c}\left(C_{O_{2} \text { toe }}-\frac{C_{O_{2} \text { all }}}{K}\right)+5
\end{aligned}
$$

