PHYSICS 7B, Section 1 - Fall 2013

Midterm 1, C. Bordel
Monday, September 30, 2013
7pm-9pm
Make sure you show your work !

Problem 1 - Thermal expansion (20 pts)

A cylindrical aluminum container of volume V_{0} is filled to the top with water at temperature T_{0}.
The linear and volumetric coefficients of thermal expansion of aluminum and water are given below for the relevant temperature range:
$\alpha_{A I}=25 \times 10^{-6} \mathrm{~K}^{-1} ; \beta_{\text {water }}=210 \times 10^{-6} \mathrm{~K}^{-1}$
a) What is the volume of the aluminum container at temperature $T>T_{0}$?
b) What is the volume of the water at temperature $T>T_{0}$?
c) Does the water spill out of the container? Explain.
d) What is the condition on the linear thermal expansion coefficient of the container to avoid the spill?

Problem 2 - Maxwell distribution (20 pts)

Molecules in a liquid roughly follow the Maxwell speed distribution.
a) Is it possible for a liquid to vaporize below the boiling point? Explain.
b) Describe and justify the effect of the evaporation process on the temperature of the liquid.
c) Make a qualitative drawing of the Maxwell speed distribution of the liquid molecules at T_{0} and $T<T_{0}$.
d) Explain the temperature dependence of the distribution's peak position in terms of the microscopic properties of the molecules.

Problem 3 - First law (20 pts)

1 mole of an ideal gas with molar specific heat $\mathrm{C}_{\mathrm{v}}=3 \mathrm{R}$ is initially at temperature T_{0} and pressure P_{0}. Vibrational degrees of freedom can be neglected in this temperature range.
a) How many degrees of freedom does the gas have? Could this be a monatomic gas? Explain.

Determine the change in internal energy ΔE, the temperature change ΔT and work W done by the gas when heat Q is added to the gas (b) isothermally, (c) isochorically, (d) isobarically.

Problem 4 - Second law (20 pts)

A gas turbine operates under the Brayton cycle, which is an alternate combination of isobaric and adiabatic processes:
AB : adiabatic compression
$B C$: isobaric expansion
CD: adiabatic expansion
DA: isobaric compression
Assume a monatomic ideal gas of constant volume molar specific heat C_{V}, undergoing the above cycle defined by the 4 temperatures T_{A}, T_{B}, T_{C} and T_{D}.
a) Draw the associated (ABCD) cycle on a PV diagram and calculate the heat transferred to or from the gas for every individual process.
b) Calculate the net work done by the gas during a full cycle.
c) Calculate the efficiency of the Brayton engine. Based on your knowledge of the Carnot engine, explain why the efficiency cannot reach 100%.
d) Calculate the entropy change for each process and then the sum for a full cycle. Comment.

Problem 5 - Electric field (20 pts)

A thin rod bent into the shape of an arc of a circle of radius R carries a uniform charge per unit length $\lambda>0$. The arc subtends a total angle $2 \theta_{0}$, symmetric about the x axis, as shown below.
a) Determine the magnitude and direction of the electric field at the origin.
b) Use your result from (a) to find the field at the origin when $\theta_{0} \rightarrow 0$ but the total charge remains constant. Why would you expect the field to have this form?

$$
\begin{aligned}
& \Delta l=\alpha l_{0} \Delta T \\
& \Delta V=\beta V_{0} \Delta T \\
& P V=N k T=n R T \\
& \frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T \\
& f_{\text {Maxwell }}(v)=4 \pi N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} e^{-\frac{m v^{2}}{2 k T}} \\
& E_{\text {int }}=\frac{d}{2} N k T \\
& Q=m c \Delta T=n C \Delta T \\
& Q=m L \text { (For a phase transition) } \\
& \Delta E_{\text {int }}=Q-W \\
& W=\int P d V \\
& C_{P}-C_{V}=R=N_{A} k \\
& P V^{\gamma}=\text { const. (For an adiabatic process) } \\
& \gamma=\frac{C_{P}}{C_{V}}=\frac{d+2}{d} \\
& C_{V}=\frac{d}{2} R \\
& e=\frac{W}{Q_{h}} \\
& e_{\text {ideal }}=1-\frac{T_{L}}{T_{H}} \\
& S=\int \frac{d Q}{T} \text { (For reversible processes) } \\
& \vec{F}=\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0} r^{2}} \hat{r} \\
& \vec{F}=Q \vec{E} \\
& \vec{E}=\int \frac{d Q}{4 \pi \epsilon_{0} r^{2}} \hat{r} \\
& \rho=\frac{d Q}{d V} \\
& \sigma=\frac{d Q}{d A} \\
& \lambda=\frac{d Q}{d l}
\end{aligned}
$$

$$
\begin{gathered}
\overline{g(v)}=\int_{0}^{\infty} g(v) \frac{f(v)}{N} d v(f(v) \text { a speed distribution }) \\
\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}} \\
\int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{(2 n)!}{n!2^{2 n+1}} \sqrt{\frac{\pi}{a^{2 n+1}}} \\
\int_{0}^{\infty} x^{2 n+1} e^{-a x^{2}} d x=\frac{n!}{2 a^{n+1}} \\
\int\left(1+x^{2}\right)^{-1 / 2} d x=\ln \left(x+\sqrt{1+x^{2}}\right) \\
\int\left(1+x^{2}\right)^{-1} d x=\arctan (x) \\
\int\left(1+x^{2}\right)^{-3 / 2} d x=\frac{x}{\sqrt{1+x^{2}}} \\
\int \frac{x}{1+x^{2}} d x=\frac{1}{2} \ln \left(1+x^{2}\right) \\
1 \\
\int \frac{\cos (x)}{} d x=\ln \left(\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right) \\
\sin (x) \approx x \\
\cos (x) \approx 1-\frac{x^{2}}{2} \\
\sin ^{x}(a+b)=\operatorname{sos}(a) \cos (b)-\sin (a) \sin (b) \\
\cos (2 x)=2 \cos { }^{2}(x)-1 \\
\sin (2 x)=2 \sin (x) \cos (x) \\
(1+x)^{\alpha} \approx 1+\alpha x+\frac{(\alpha-1) \alpha}{2} x^{2} \\
2
\end{gathered}
$$

