Math 1B. Solutions to Second Midterm

1. (22 points) The portion of the curve

$$
x=1+\sqrt{1-y^{2}}
$$

from $(3 / 2, \sqrt{3} / 2)$ to $(1,1)$ is rotated about the x-axis. Find the area of the resulting surface.
Solution 1. The derivative $d x / d y$ is

$$
\frac{d x}{d y}=\frac{1}{2}\left(1-y^{2}\right)^{-1 / 2}(-2 y)=-\frac{y}{\sqrt{1-y^{2}}},
$$

so

$$
\begin{aligned}
d s & =\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& =\sqrt{1+\left(\frac{-y}{\sqrt{1-y^{2}}}\right)^{2}} d y \\
& =\sqrt{1+\frac{y^{2}}{1-y^{2}}} d y \\
& =\sqrt{\frac{1-y^{2}+y^{2}}{1-y^{2}}} d y \\
& =\frac{1}{\sqrt{1-y^{2}}} d y .
\end{aligned}
$$

Therefore the area is

$$
\begin{aligned}
\text { Area } & =2 \pi \int_{\sqrt{3} / 2}^{1} y d s \\
& =2 \pi \int_{\sqrt{3} / 2}^{1} \frac{y d y}{\sqrt{1-y^{2}}} \\
& =2 \pi\left(-\frac{1}{2}\right) \int_{1 / 4}^{0} \frac{d u}{\sqrt{u}} \\
& =-\left.\pi \cdot 2 u^{1 / 2}\right|_{1 / 4} ^{0} \\
& =-\pi\left(0-2 \sqrt{\frac{1}{4}}\right) \\
& =\pi .
\end{aligned}
$$

Here we used the substitution $u=1-y^{2}, d u=-2 d y$.

Solution 2. First solve for y in terms of x :

$$
\begin{aligned}
x-1 & =\sqrt{1-y^{2}} \\
x^{2}-2 x+1 & =1-y^{2} \\
y^{2} & =2 x-x^{2} \\
y & =\sqrt{2 x-x^{2}}
\end{aligned}
$$

(We take the positive square root because y is given as ranging from $\sqrt{3} / 2$ to 1 .)
Then the derivative is

$$
\frac{d y}{d x}=\frac{1}{2}\left(2 x-x^{2}\right)^{-1 / 2}(2-2 x)=\frac{1-x}{\sqrt{2 x-x^{2}}}
$$

and

$$
\begin{aligned}
d s & =\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\sqrt{1+\left(\frac{1-x}{\left.\sqrt{2 x-x^{2}}\right)^{2}} d x\right.} \\
& =\sqrt{1+\frac{1-2 x+x^{2}}{2 x-x^{2}}} d x \\
& =\sqrt{\frac{2 x-x^{2}+1-2 x+x^{2}}{2 x-x^{2}}} d x \\
& =\frac{1}{\sqrt{2 x-x^{2}}} d x
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\text { Area } & =2 \pi \int_{1}^{3 / 2} y d s \\
& =2 \pi \int_{1}^{3 / 2} \sqrt{2 x-x^{2}} \cdot \frac{d x}{\sqrt{2 x-x^{2}}} \\
& =2 \pi \int_{1}^{3 / 2} d x \\
& =\left.2 \pi x\right|_{1} ^{3 / 2} \\
& =\pi
\end{aligned}
$$

2. (18 points) Without using the Comparison Test or Limit Comparison Test, determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$
\sum_{n=1}^{\infty} \frac{1}{n\left((\ln n)^{2}+1\right)}
$$

Use the Integral Test. Note that the functions $(\ln x)^{2}+1$ and x are positive increasing functions of x (for $x \geq 1$), so their product $x\left((\ln x)^{2}+1\right)$ is a positive increasing function of x, and therefore the function

$$
\frac{1}{x\left((\ln x)^{2}+1\right)}
$$

is a positive decreasing function of x. It is also continuous. This means that we can apply the Integral Test.

Using the substitution $u=\ln x, d u=d x / x$, we have

$$
\int \frac{d x}{x\left((\ln x)^{2}+1\right)}=\int \frac{d u}{u^{2}+1}=\arctan u+C=\arctan (\ln x)+C .
$$

Therefore

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{x\left((\ln x)^{2}+1\right)} & =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{d x}{x\left((\ln x)^{2}+1\right)} \\
& =\left.\lim _{t \rightarrow \infty} \arctan (\ln x)\right|_{1} ^{t} \\
& =\lim _{t \rightarrow \infty}(\arctan (\ln t)-0) \\
& =\frac{\pi}{2}
\end{aligned}
$$

The last step is true because as $t \rightarrow \infty, \ln t \rightarrow \infty$, and so $\arctan (\ln t) \rightarrow \pi / 2$.
Since the integral converges, the series also converges. Since all of the terms in the series are positive, the series converges absolutely.
3. (20 points) Without using l'Hospital's Rule, find

$$
\lim _{x \rightarrow 0} \frac{e^{x^{2}}-\left(1+x^{2}\right)}{\left(e^{x}-1\right)^{4}}
$$

From the known series $\sum_{n=0}^{\infty} x^{n} / n!$ for e^{x}, we see that the numerator of the fraction is equal to the power series

$$
\sum_{n=2}^{\infty} \frac{x^{2 n}}{n!}=\frac{x^{4}}{2}+\frac{x^{6}}{6}+\ldots
$$

(note that subtracting off $1+x^{2}$ removes the $n=0$ and $n=1$ terms from the series). Similarly, the denominator of the fraction is

$$
\left(x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots\right)^{4}
$$

and this is a series whose first term is x^{4}. Cancelling out x^{4} from numerator and denominator then gives

$$
\lim _{x \rightarrow 0} \frac{e^{x^{2}}-\left(1+x^{2}\right)}{\left(e^{x}-1\right)^{4}}=\lim _{x \rightarrow 0} \frac{\frac{1}{2}+\frac{x^{2}}{6}+\ldots}{1+\ldots}
$$

It is easy to see that the quotient is then given by a power series whose constant term is $1 / 2$, and whose radius of convergence is positive.

This quotient series equals the function $\frac{e^{x^{2}}-\left(1+x^{2}\right)}{\left(e^{x}-1\right)^{4}}$ for all nonzero x within its radius of convergence, and the value of the power series is continuous, so we get that the limit is the constant term of the quotient power series:

$$
\lim _{x \rightarrow 0} \frac{e^{x^{2}}-\left(1+x^{2}\right)}{\left(e^{x}-1\right)^{4}}=\frac{1}{2}
$$

4. (16 points) Indicate which of the following graphs best depicts the solutions of the differential equation

$$
y^{\prime}=y \sin y
$$

A.

D.

B.

E.

The right-hand side $y \sin y$ is positive for $y \in(0, \pi)$ and for $y \in(-\pi, 0)$, and negative for $y \in(\pi, 2 \pi)$ and for $y \in(-2 \pi,-\pi)$. It also has an equilibrium solution $y=0$. This is consistent only with picture \mathbf{C}.
(Choosing picture A would have gotten 3 points, since it would only have missed the equilibrium solution.)
5. (24 points) Find the general solution of the differential equation

$$
y^{\prime}=\frac{\ln x}{x+x y} .
$$

This is a separable equation:

$$
\frac{d y}{d x}=\frac{\ln x}{x} \cdot \frac{1}{1+y} .
$$

Solving it as such (using the substitution $u=\ln x, d u=d x / x$) gives

$$
\begin{aligned}
\int(1+y) d y & =\int \frac{\ln x}{x} d x=\int u d u=\frac{u^{2}}{2}+C=\frac{(\ln x)^{2}}{2}+C ; \\
y+\frac{y^{2}}{2} & =\frac{(\ln x)^{2}}{2}+C ; \\
\frac{y^{2}}{2}+y-\frac{(\ln x)^{2}}{2}-C & =0 ; \\
y & =-1 \pm \sqrt{1+(\ln x)^{2}+2 C} \\
& =-1 \pm \sqrt{(\ln x)^{2}+C^{\prime}} .
\end{aligned}
$$

