Midterm 2

EE40 - Summer 2014

Gerd Grau

Name:

Discussion section:

Discussion GSI:

Student ID:

Instructions:

Unless otherwise noted on a particular problem, you must show your work in the space provided or on the back of the exam pages.

Underline your answers to each problem with a double line.

Simplify your answers as far as possible unless otherwise noted.
Be sure to provide units where necessary.

GOOD LUCK!

Question	Points
$\mathbf{1}$	Max
$\mathbf{2}$	9
$\mathbf{3}$	15
$\mathbf{4}$	22
Total	18

Question 1 (9 points):

Consider the below op-amp circuit under DC conditions. Assume the op-amp is ideal and that you can apply the negative feedback assumption.
a) Calculate the output voltage V_{o}.
b) Do you see any problem with this result for real op-amps such as those in our lab?

a) $v_{p_{1}}=v_{n_{1}}=-1 V$

$$
\begin{array}{r}
K C L_{\text {ct }} v_{n_{1}}: \frac{11-(-1)}{2}+\frac{v_{p_{2}}-r-(-1)}{10}+1=0 \\
v_{p_{2}}=10 \times\left(-\frac{12}{2}-1\right)=-70 \mathrm{~V}
\end{array}
$$

Second stage is non-inverting arplifier

$$
\Rightarrow v_{0}=\left(1+\frac{4}{2}\right) \cdot v_{P 2}=3+(-70)=-210 \mathrm{~V}
$$

b) io is limited by supply voltage. $_{\text {Typical op-angs are in the }}$
-210 V is too large for typical op-anps.
rage

$$
\begin{aligned}
& 2 \pm 5-25 v \\
& 2
\end{aligned}
$$

Question 2 (15 points):

a) Find and draw the Thevenin equivalent circuit of the below circuit in terms of the equivalent open circuit voltage (magnitude and phase) and Thevenin complex impedance (in the form $a+b j)$. The $A C$ frequency of operation is $\omega=2000 \mathrm{rad} / \mathrm{sec}$.
b) A 1Ω resistor is connected across the output of the equivalent circuit as illustrated in the second circuit diagram. Draw the phasor diagram showing the source voltage, the voltage across the Thevenin impedance and the voltage across the 1Ω load.

Circuit for part a):

Equivalent circuit for part b):

a) Simplify circuit:
 1-pedunces:

Potential divider:

$$
v_{\text {sc }}=v_{0 c}=2 \cdot \frac{-2 j}{4+2 j-2 j}=-j=1 e^{-\frac{\pi}{2}}
$$

Equivalent impedance:

$$
\begin{aligned}
& \text { Equivalent impedance: } \\
& z_{\text {th }}=(4+2 j) 11(-2 j)=\frac{(4+2 j)+(-2 j)}{4+2 j-2 j}=(1-2 j) \Omega
\end{aligned}
$$

b)

$$
\begin{aligned}
& v_{\text {th }}=1 e^{-\frac{\pi}{2}}=-j \\
& v_{L}\left.=\frac{1}{1+1-2 j} \cdot 1 e^{-\frac{\pi}{2}}=\frac{1}{2-2 j} \times 1-j\right)=\frac{2+}{4+} \\
& v_{z}=\frac{1-2 j}{2-2 j} \times(-j)=\frac{(-2-j)(2+2 j)}{4+4}=\frac{-4+2-2}{8} \\
& v_{\text {th }}^{1 / m} / v_{z} \\
&-1 / 4
\end{aligned}
$$

$$
V_{L}=\frac{1}{1+1-2 j} \cdot 1 e^{-\frac{\pi}{2}}=\frac{1}{2-2 j} \times(-j)=\frac{2+2 j}{4+4}(-j)=\frac{1}{4}-\frac{1}{4} j
$$ one of them necessary

Also correct:

Question 3 (22 points):

Analyze the below MOSFET circuit. The transconductance g_{m} is $0.1 \mathrm{~A} / \mathrm{V}$. If any of your results are complex numbers, quote the final result in the form a+bj. If you can round any result to an integer value with an error of less than 1%, then do so.
a) Draw the small signal equivalent circuit i.e. use superposition to only consider AC signals ignoring DC. You can assume that the applied DC voltages put the MOSFET into the operating regime that allows you to use the MOSFET equivalent circuit from class. You can assume that r_{d} is large enough to be ignored.
b) Find the following parameters assuming that the 100fF capacitor can be ignored and treated as an open circuit:
i) Gain $A=V_{\text {out }} / V_{\text {in }}$
ii) Input impedance $Z_{\text {in }}=V_{\text {in }} / i_{\text {in }}$
c) Now include the capacitor to find those parameters. $\omega=10^{12} \mathrm{rad} / \mathrm{sec}$.
i) Gain $A=v_{\text {out }} / V_{\text {in }}$
ii) Input impedance $Z_{\text {in }}=V_{\text {in }} / i_{\text {in }}$

b) i)

$$
\begin{align*}
& v_{0}=-g_{r} v_{g s} * 100 \mathrm{k} \\
& v_{g s}=v_{i n}-v_{s} \\
& v_{s}=g_{m} v_{g s} * 10 \mathrm{k} \\
& v_{y s}=v_{i n}-g_{m} v_{g s} \times 10^{4} \\
& v_{y s}=\frac{v_{i n}}{1+10^{4} g_{m}}
\end{align*}
$$

$$
\text { ii) } R_{i_{n}}=\frac{v_{i n}}{i_{i n}}=\text { (1) }
$$

c) il

$$
v_{0}=-g_{2} v_{g s} \cdot 10^{\overline{5}} \quad v_{g s}=v_{i n}-v_{s}
$$

$K C L$ at s :

$$
\begin{align*}
& \frac{v_{s}}{10^{4}}+\frac{-v_{g s}}{\frac{1}{j \omega c}}-g m v_{g s}=0 \quad \frac{1}{j 0 c}=\frac{-j}{10^{12} \times 10^{-13}}=-10 j \\
& \frac{v_{s}}{10^{4}}+\frac{v_{g s}}{10 j}-0: 1 v_{g s}=0 \\
& v_{s}=10^{4} v_{g s}\left(\frac{1}{10}-\frac{1}{10 j}\right) \tag{8}\\
& v_{g s}=v_{i n}-v_{s}=v_{i n}-10^{4} v_{g s}\left(\frac{1}{10}-\frac{1}{10 j}\right) \cdot \& v_{g s}=\frac{v_{i n}}{1+10^{4}\left(\frac{1}{10}-\frac{1}{10 j}\right)} \\
& v_{0}=-g_{m} v_{g s} 10^{5} \\
& =-\frac{g-10^{5}}{1+10^{4}\left(\frac{1}{10}-\frac{1}{10 j}\right)} \cdot v_{\text {in }} \\
& A=\frac{v_{0}}{v_{i n}}=-\frac{v_{10} \times 10^{5}}{\lambda+10^{3}(1+j)} \approx-\frac{10^{4}}{10^{3}} \times \frac{1-j}{1+1}=-5 \times(1-j)
\end{align*}
$$

ii)

$$
\begin{aligned}
z_{\text {in }}^{n} & =\frac{v_{\text {in }}}{v_{\text {in }}} \quad i_{\text {in }}=\frac{v_{g s}}{1 / j \nu 0}=\frac{v_{g s}}{-10 j}=\frac{1}{-10 j} \times \frac{v_{i n}}{1+10^{4}\left(\frac{1}{10}-\frac{1}{10 j}\right)} \\
z_{\text {in }} & =-10 j \times\left(1+10^{3}(1+j)\right) \approx-10 j \times 10^{3}(1+j) \\
& =10^{4} \cdot 10^{4} j
\end{aligned}
$$

Question 4 (18 points):

Consider the below op-amp circuit. Assume the op-amp is ideal except for a limited supply voltage of $\pm 5 \mathrm{~V}$. The input is a 2 V peak-to-peak square wave at 1 kHz with duty cycle of 50% ie. the input oscillates between -1 V and +1 V . Clearly the output is connected to both the negative and positive supply terminal of the op-amp. For each part be careful whether you can use the negative feedback simplification for ideal op-amps.
a) Draw the output waveform of v_{o} for $R=1 \Omega$ and the waveform of $v_{i n}$ on the same axes. Show your calculations. Can you use the negative feedback assumption? Give a reason.
b) Draw the output waveform of v_{o} for $R=100 \Omega$ and the waveform of $v_{\text {in }}$ on the same axes. Show your calculations. Can you use the negative feedback assumption? Give a reason.

$$
\text { a) } V_{p}=V_{0} \times \frac{1}{1+10}=\frac{v_{0}}{11}
$$

KL:

$$
\begin{aligned}
& \frac{v_{i n}-v_{n}}{10}+\frac{v_{0}-v_{n}}{10}=0 \\
& v_{n}=\frac{v_{i n}+v_{0}}{2}
\end{aligned}
$$

$$
\text { If } v_{0}=+5 V, v_{p}=\frac{5}{11}<0.5 \mathrm{~V} \text {. Minimum } v_{n}=\frac{-1+5}{2}=2
$$

$$
\begin{array}{r}
\Rightarrow v_{n}>v_{p} \Rightarrow \text { contradiction. } v_{0} \text { does not vail } \Rightarrow \text { negative (similarly } \\
\\
\text { feed back for } v_{0}=-5 v \text {). }
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow v_{n}=v_{p}=\frac{v_{0}}{11} \\
& \frac{v_{i n}-\frac{v_{0}}{11}}{10}+\frac{v_{0}-\frac{v_{0}}{11}}{10}=0 \\
& v_{\text {in }}+\frac{d}{11} v_{0}=0 \\
& v_{0}=\frac{-11}{9} v_{\text {in }}
\end{aligned}
$$

b) $V_{p}=\frac{100}{100+10} v_{0}=\frac{10}{11} v_{0}$
$\Rightarrow v_{p}-v_{n}>0 \Rightarrow$ positive feedback similarly for $v_{0}=-5 V$
\& Input can nover switch the ountput

- Ontput depads on initial stathe on sforkup Two possitile states:

