
Computer Science 162, Fall 2014
David Culler

University of California, Berkeley
Midterm 1

September 29, 2014

Name

SID

Login

TA Name

Section Time

This is a closed book exam with one 2-sided page of notes permitted. It is intended to be a 50
minute exam. You have 80 minutes to complete it. The number at the beginning of each question
indicates the points for that question. Write all of your answers directly on this paper. Make
your answers as concise as possible. If there is something in a question that you believe is open to
interpretation, please raise your hand to request clarification. When told to open the exam, put
your login on every page and check that you have them all. (Final page is for reference.)

By my signature below, I swear that this exam is my own work. I have not obtained answers or
partial answers from anyone. Furthermore, if I am taking the exam early, I promise not to discuss
it with anyone prior to completion of the regular exam, and otherwise I have not discussed it with
anyone who took the early alternate exam.

X _______________________________________

Grade Table (for instructor use only)

Question Points Score

1 25

2 25

3 25

4 25

Total: 100

Computer Science 162, Fall 2014 Midterm 1 - Page 2 of 16 September 29, 2014

1. (25 points) Operating Systems Concepts

(a) (20 points) Choose either true or false for the below questions. You do not need to provide
justifications.
i. (2 points) A user program can request an operating system service by issuing a system

call. √
True

© False
ii. (2 points) Threads in a single process are prevented by the operating system from

accessing the stacks of other threads.
© True
√

False
iii. (2 points) A pintos kernel thread enters thread_switch with interrupts disabled, so

thread_switch enables them before switching to the next thread.
© True
√

False
iv. (2 points) The scheduler places RUNNING threads on a queue according to a schedul-

ing algorithm.
© True
√

False
v. (2 points) In operating systems like Unix, different operations are used for accessing

files, transferring information through sockets, and communication between processes.
© True
√

False
vi. (2 points) In operating systems like Unix, different operations are used for setting file

transfers and network communication.√
True

© False
vii. (2 points) Interrupt handlers can call pthread_mutex_lock because it is atomic.

© True
√

False
viii. (2 points) Disabling interrupts always protects a critical section of code.

© True
√

False
ix. (2 points) A successful call to fork() always returns twice - once in the child process

and once in the parent process.√
True

© False
x. (2 points) Path resolution is implemented by the kernel.

© True
√

False

Computer Science 162, Fall 2014 Midterm 1 - Page 3 of 16 September 29, 2014

(b) (5 points) Which of the following is true about Round Robin Scheduling? Select all the
choices that apply.

© Cache performance is likely to improve relative to FCFS.
© If no new threads are entering the system all threads will get a chance to run

in the cpu every QUANTA*SECONDS_PER_TICK*NUMTHREADS seconds. (Assuming
QUANTA is in ticks).

√
This is the default scheduler in Pintos

√
If quanta is constantly updated to become the # of cpu ticks since
boot, Round Robin becomes FIFO.

© If all threads in the system have the same priority, Priority Schedulers must
behave like round robin.

2. (25 points) Processes and Threads
For the following consider the following nearly identical process based and thread based pro-
grams. For each question, answer YES or NO and provide a short, crisp explanation. Assume
that functions will be well-behaved (e.g., malloc will succeed) and that printf() is
atomic. (We will answer half the first part to provide an example.)

Computer Science 162, Fall 2014 Midterm 1 - Page 4 of 16 September 29, 2014

1 int i = 100;
2 char *buf;
3
4 void process () {
5 pid_t pid;
6 int status , rd;
7 int j = 1;
8 buf = strcpy(malloc (100), "boring");
9 pid = fork ();

10 if (pid != 0) { /* parent */
11 printf("P␣Parent:␣j=%d\n", j);
12 i = 162;
13 j = 2;
14 printf("P␣Parent:␣j=%d\n", j);
15 printf("P␣Parent:␣%s\n", buf);
16 j = 4;
17 wait(& status);
18 } else { /* child */
19 printf("P␣Child:␣i=%d,␣j=%d\n", i, j);
20 printf("P␣Child:␣i=%d,␣j=%d\n", i, j);
21 j = 3;
22 strcpy(buf , "cool");
23 exit (0);
24 }
25 }

,
1 int i = 100;
2 char *buf;
3
4 void *tfun(void *noarg) {
5 int j = 0;
6 printf("T␣Child:␣i=%d,␣j=%d\n", i, j);
7 printf("T␣Child:␣i=%d,␣j=%d\n", i, j);
8 j = 3;
9 strcpy(buf , "cool");

10 pthread_exit(NULL);
11 }
12
13 void thread () {
14 pthread_t tid;
15 int j = 1;
16 buf = strcpy(malloc (100), "boring");
17 pthread_create (&tid , NULL , tfun , NULL);
18 printf("T␣Parent:␣j=%d\n", j);
19 i = 162;
20 j = 2;
21 printf("T␣Parent:␣j=%d\n", j);
22 printf("T␣Parent:␣%s\n", buf);
23 j = 4;
24 pthread_join(tid , NULL);
25 }

(a) (5 points) Can the output of the process-based program ever include (meaning they appear
in this order, possibly with other output interleaved) the following? Why? (We are going
to answer this one for you!)
P Parent: j=1
P Child: i=100, j=1
P Parent: j=2

YES. The child process may get switched in after the parent prints its initial value of
its stack variable j and the parent later switch back in. The child obtained a copy of
the parent’s stack and heap at the fork and it has changed neither when it first prints.

Computer Science 162, Fall 2014 Midterm 1 - Page 5 of 16 September 29, 2014

Can the output of the thread-based program ever include the following? Why?
T Parent: j=1
T Child: i=100, j=1
T Parent: j=2

Solution: No. The child thread has its own j on its stack, and this j only have value
0 when the child thread prints.

(b) (10 points) (be careful) Can the output of the process-based program ever include the
following? Why?
P Parent: j=1
P Parent: j=2
P Child: i=100, j=1

Solution: YES. The child process may get switched in after the parent process executes
lines 11-14. The child obtained a copy of the parent’s stack and heap at the fork and it
has changed neither when it first prints.

Can the output of the thread-based program ever include the following? Why?
T Parent: j=1
T Parent: j=2
T Child: i=100, j=1

Solution: NO. If the child is switched in after the parent reaches line 14, the value of
shared variable i must be 162. And also j in the child thread should be 0.

(c) (10 points) Can the output of the process-based program ever include the following? Why?
P Parent: cool

Computer Science 162, Fall 2014 Midterm 1 - Page 6 of 16 September 29, 2014

Solution: NO. The parent process never changes the value of *buf from what was set
in line 8. The child has its own copy of the heap.

Can the output of the thread-based program ever include the following? Why?
T Parent: cool

Solution: YES. The child thread could get switched in and execute line 11 before the
parent resumes to execute line 22.

Computer Science 162, Fall 2014 Midterm 1 - Page 7 of 16 September 29, 2014

3. (25 points) Synchronized Objects

(a) (15 points) Assuming malloc is threadsafe, modify (by showing where code needs to be
inserted) the following unbounded stack abstraction to make ppush and ppop threadsafe
using pthreads operations. We have started it for you by adding the lock to the pdl struct.
(You do not need to eliminate the busy-wait. It only needs to be threadsafe, not highly
efficient. You may not need to fill every line indicated.)

(b) (10 points) Fill in dequeue to create a thread-safe function that waits until the stack is
non-empty, removes and item and returns it.
typedef struct item {

struct item *next;
void *val;

} item_t;

typedef struct pdl {
item_t *head;

} pdl_t;

pdl_t *new_pdl() {
pdl_t *s = malloc(sizeof(pdl_t));
s->head = NULL;
pthread_mutex_init(&s->pdl_lock, NULL);
return s;

}

void ppush (pdl_t *s, void *val) {

item_t *new_item;

new_item = malloc(sizeof(item_t));
new_item->val = val;
new_item->next = s->head;
s->head = new_item;

}

Computer Science 162, Fall 2014 Midterm 1 - Page 8 of 16 September 29, 2014

void *ppop(pdl_t *s) {

item_t *pop;
pop = s->head;
void *res = NULL;
if (pop) {

res = pop->val;

s->head = pop->next;
free(pop);

}

return res;

}

bool empty_pdl(pdl_t *s) {
return (s->head == NULL);

}

void *dequeue(pdl_t *s) {
void * res;

pthread_yield();

return res;
}

Solution:
typedef struct item {

struct item *next;
void *val;

Computer Science 162, Fall 2014 Midterm 1 - Page 9 of 16 September 29, 2014

} item_t;

typedef struct pdl {
item_t *head;
pthread_mutex_t pdl_lock;

} pdl_t;

pdl_t *new_pdl() {
pdl_t *s = malloc(sizeof(pdl_t));
s->head = NULL;
pthread_mutex_init(&s->pdl_lock, NULL);
return s;

}

void ppush (pdl_t *s, void *val) {
pthread_mutex_lock(&s->pdl_lock);
item_t *new_item;

new_item = malloc(sizeof(item_t));
new_item->val = val;
new_item->next = s->head;
s->head = new_item;

pthread_mutex_unlock(&s->pdl_lock);
}

void *ppop(pdl_t *s) {
item_t *pop;

pthread_mutex_lock(&s->pdl_lock);
pop = s->head;
void *res = NULL;
if (pop) {

res = pop->val;
s->head = pop->next;
free(pop);

}
pthread_mutex_unlock(&s->pdl_lock);
return res;

}

bool empty_pdl(pdl_t *s) {
return (s->head == NULL);
}

Computer Science 162, Fall 2014 Midterm 1 - Page 10 of 16 September 29, 2014

void *dequeue(pdl_t *s) {
void * res;
while ((res = ppop(s)) == NULL) {
pthread_yield()
}
return res;

}
The above solution is the only completely correct one. The most common incorrect
answer to dequeue was to use emptypdl to figure out if the queue is empty. This
is incorrect, as emptypdl does not access the elements of pdl with the lock (8 point
solution). Attempts to protect emptypdl were usually incorrect, but half a point was
awarded for recognizing the need to protect it. 1 point was taken off for minor syntax
errors.

Computer Science 162, Fall 2014 Midterm 1 - Page 11 of 16 September 29, 2014

4. (25 points) Operating System Implementation: Pintos
You design a new scheduler, you call it TFS. The idea is relatively simple, if a thread makes it
to the end of a round robin scheduling quanta it sets its own priority to -1 times the number of
ticks it has ever spent in the cpu.

You may make the following assumptions in this problem.

• Priority scheduling in Pintos is functioning properly,
• Priority donation is not implemented.
• Alarm is not implemented.
• thread_set_priority is never called by the thread
• You may ignore the limited set of priorities enforced by pintos (priority values may span

from INT_MIN to INT_MAX).

i. (4 points) Below is the declaration of struct thread, what field(s) would we need to add
to make TFS possible. You may not need all the blanks.
struct thread

{
/* Owned by thread.c. */
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes). */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem allelem; /* List element for all threads list. */

/* Shared between thread.c and synch.c. */
struct list_elem elem; /* List element. */

#ifdef USERPROG
/* Owned by userprog/process.c. */
uint32_t *pagedir; /* Page directory. */

#endif

___________________________ /* What goes here? */

___________________________ /* What goes here? */

___________________________ /* What goes here? */

/* Owned by thread.c. */
unsigned magic; /* Detects stack overflow. */

};

Solution:
struct thread

{

Computer Science 162, Fall 2014 Midterm 1 - Page 12 of 16 September 29, 2014

/* Owned by thread.c. */
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes). */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem allelem; /* List element for all threads list. */

/* Shared between thread.c and synch.c. */
struct list_elem elem; /* List element. */

#ifdef USERPROG
/* Owned by userprog/process.c. */
uint32_t *pagedir; /* Page directory. */

#endif

int ticks_in_cpu;
/* Owned by thread.c. */
unsigned magic; /* Detects stack overflow. */

};

Computer Science 162, Fall 2014 Midterm 1 - Page 13 of 16 September 29, 2014

ii. (8 points) A what is needed for thread_tick() for TFS to work properly. You may not
need all the blanks.
void
thread_tick (void)
{

struct thread *t = thread_current ();

/* Update statistics. */
if (t == idle_thread)

idle_ticks++;
#ifdef USERPROG

else if (t->pagedir != NULL)
user_ticks++;

#endif
else

kernel_ticks++;

__;

__;
/* Enforce preemption. */
if (++thread_ticks >= TIME_SLICE) {

intr_yield_on_return ();

_________________________________;

}

}

Solution:
void
thread_tick (void)
{

struct thread *t = thread_current ();

Computer Science 162, Fall 2014 Midterm 1 - Page 14 of 16 September 29, 2014

/* Update statistics. */
if (t == idle_thread)

idle_ticks++;
#ifdef USERPROG

else if (t->pagedir != NULL)
user_ticks++;

#endif
else

kernel_ticks++;

t->ticks_in_cpu++;
/* Enforce preemption. */
if (++thread_ticks >= TIME_SLICE){

intr_yield_on_return ();
thread_set_priority (-t->ticks_in_cpu);

}

}

Computer Science 162, Fall 2014 Midterm 1 - Page 15 of 16 September 29, 2014

iii. (5 points) In a few short words, describe the overall behavior of this scheduler. How is it
different from regular round robin or FIFO scheduler.

Solution: It essentially penalizes threads for using up the time quanta, and gives
them a lower priority. So instead of round robin which treats all the threads “fairly",
this scheduler prefers threads that don’t spend a lot of time in the cpu.

iv. (4 points) What could you do to "trick" this scheduler to giving a thread more cpu time.
(Hint: thread_ticks is set to 0 every time the scheduler picks a new thread)

Solution: After first doing a lot of IO and spending very little time in the cpu,
your priority in the cpu will be very high, and then you can just constantly keep
yielding, which will reset thread_ticks so your priority will never be lowered

v. (4 points) What is a flaw in this scheduler when you have a steady state of threads being
created, and very little threads destroyed. (Hint: Think about what happens when the
scheduler has run for a really long time).

Solution: Since you are only keeping track of the number of ticks a thread spends
in the cpu, older threads who have "lived" longer will not get to run till all the new
threads have spent as much time in the cpu as them.

Computer Science 162, Fall 2014 Midterm 1 - Page 16 of 16 September 29, 2014

/******************************** Pthreads ******************************/
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);
int pthread_join(pthread_t thread, void **retval);
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_post(sem_t *sem);
int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);

/****************************** Strings & Processes ******************************/
char *strcpy(char *dest, const char *src);
char *strncpy(char *dest, const char *src, size_t n);

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

/****************************** Pintos ******************************/

