
Problem 1

a

Let us consider one plate one of the plates. Draw a Gaussian cylinder around it such that the z axis of the
cylinder points perpendicular to the plate. The electric field must point in the z direction. This is because
if at any point, the infinite plane looks the same in the x and y direction, so the forces from these directions
would have to cancel. Thus, the endcaps of the cylinder have an area vector parallel to the electric field, but
the surface of the cylinder has an area vector perpendicular to the electric field. The electric field is constant
on the endcap, as as argued before, at any given z, there are no special points as everything looks the same
in the x and y direction. Using Gauss’s law gives

∮

~E · d ~A = 2| ~E|A =
σA

ǫ0

which gives

| ~E| =
σ

2ǫ0

The direction points away from the plates. Now consider the problem at hand. In the first quadrant
(x > 0, y > 0), the total electric field is:

σ

2ǫ0
(x̂− ŷ)

In the second quadrant (x < 0, y > 0),

σ

2ǫ0
(−x̂− ŷ)

In the third quadrant (x < 0, y < 0),

σ

2ǫ0
(−x̂+ ŷ)

In the fourth quadrant (x > 0, y < 0),

σ

2ǫ0
(x̂+ ŷ)

0.1 b

Since the string is taught, the tension of the string balances the other forces. The sum of forces in the ŷ
direction are:

T sin(θ) +mg =
−qσ

2ǫ0

The sum of forces in the x̂ direction are:

−qσ

2ǫ0
= T cos(θ)

Dividing the two equations

tan(θ) =

−qσ

2ǫ0
−mg

−qσ

2ǫ0

= 1 +
2mgǫ0
qσ

.

So the angle is
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θ = arctan(1 +
2mgǫ0
qσ

).

Problem 2

a

I will use Coulomb’s law to determine the field. The distance vector, r̂ from where a charge sitting at some
θ to the origin is r̂ = (− cos(θ),− sin(θ)). Thus:

~E =

∫

dq

4πǫ0r2
r̂ =

∫

2π

0

λ(θ)(− cos(θ)x̂− sin(θ)ŷ)adθ

4πǫ0a2
= −

λ0

4πǫ0a

∫

2π

0

cos(kθ)(cos(θ)x̂+ sin(θ)ŷ)

Now look at the integral in the x̂ direction. Using the given identity

∫

2π

0

cos(kθ) cos(θ)dθ =
1

2

∫

2π

0

cos((k + 1)θ) + cos((k − 1)θ)dθ

=
1

2

(

sin((k + 1)θ)

k + 1
+

sin((k − 1)θ)

k − 1

)

∣

∣

∣

∣

∣

2π

0

=
1

2

(

sin((k + 1)2π)

k + 1
+

sin((k − 1)2π)

k − 1

)

Now look at the integral in the ŷ direction. Using the given identity

∫

2π

0

sin(θ) cos(kθ)dθ =
1

2

∫

2π

0

sin((k + 1)θ) + sin((1− k)θ)dθ

= −
1

2

(

cos((k + 1)θ)

k + 1
+

cos((1− k)θ)

1− k

)

∣

∣

∣

∣

∣

2π

0

=
1

2(k + 1)
+

1

2(1− k)
−

1

2

(

cos((k + 1)2π)

k + 1
+

cos((k − 1)2π)

1− k

)

Putting this together,

~E = −
λ0

4πǫ0a

[

1

2

((

sin((k + 1)2π)

k + 1
+

sin((k − 1)2π)

k − 1

))

x̂

+

(

1

2(k + 1)
+

1

2(1− k)
−

1

2

(

cos((k + 1)2π)

k + 1
+

cos((k − 1)2π)

1− k

))

ŷ

]

Except when k = 1 (or equivalently k = −1, as the charge distribution is an even function). In this case,
the second term in the first line of the x̂ integral is 1. Thus

∫

2π

0

cos2(θ)dθ =
1

2

sin(4π)

2
+ π = π

When k = 1, the second term in the first line of the ŷ integral is 0. Thus,

2



∫

2π

0

cos(θ) sin(θ)dθ =

∫

1

1

udu = 0

Where I used the substitution u = sin(θ). Thus

~Ek=±1 = −
λ

4ǫ0a
x̂

b

By looking at the expressions, the electric field in the x direction is 0 when k+ 1 and k− 1 are half integers
or full integers, as this will make the argument of sin a multiple of π. However, as shown above, k = 1 and
k = −1, is an exception to the rule. This means that k ∈ {...,−2,− 3

2
,− 1

2
, 0, 1

2
, 3

2
, 2, ...}.

By looking at the expressions, the electric field in the y direction is 0 when k+1 and k− 1 are full integers,
as this will make the argument of sin a multiple of 2π. This means that k ∈ {...,−2,−1, 0, 1, 2, ...}.
You could have done this without having gotten an answer for part a. For there to be no field in the y
direction, there has to be as much charge above the axis as below. Thus, the charge distribution should
be symmetric about θ = π. This happens when k is an integer, or k ∈ {...,−2,−1, 0, 1, 2, ...}. For there to
be no field in the x direction, there has to be as much charge on the left of the y-axis as to the right of
it. Thus, the charge distribution should look the same from [π/2, 3π/2] and from [0, π/2]

⋃

[3π/2, 2π]. By
looking at the integral over the regions, you see that this occurs when k is a half integer except 1 or -1.
Thus, k ∈ {...,−2,− 3

2
,− 1

2
, 0, 1

2
, 3

2
, 2, ...}.
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Problem 3

a)

The region in between the spheres has no charge, but this is equivalent to having positive charge and negative
charge there that overlap. Thus, the system is equivalent to a positive sphere with charge density ρ centered
at x = −a and a negative sphere with charge density −ρ centered at x = a.

Consider one of the spheres. Use Gauss’s law with a spherical Gaussian surface of radius r < a. The charge

enclosed is Qin = 4πr3

3
ρ. The field should be radial as there is no variation in the θ or φ direction of the

charge distribution. At some r, any given point looks the same, so the field should be constant along r. Thus

∮

~Ein · d ~A = | ~Ein|4πr
2 =

qin

ǫ0
=

4πr3

3ǫ0
ρ

And so the magnitude of the electric field is

| ~Ein| =
ρr

3ǫ0

By the superposition principle, the electric field due to both of the spheres is the sum of the two. Thus, for
a point x inside the overlap region:

| ~Eoverlap(x)| =
ρ(x− a

2
)

3ǫ0
+

−ρ(x+ a
2
)

3ǫ0
=

ρa

3ǫ0

As the right hand side is negatively charged, positive charges will be attracted to it. Thus:

~Eoverlap(x) =
ρa

3ǫ0
x̂

b)

Now take a Guassian surface of radius r > a. Now, the charge enclosed is simple, Qin = ρ 4πa3

3
. For the same

reasons above, the field should be radial and constant at lines of constant r. Thus

∮

~Eout · d ~A = | ~Eout|4πr
2 =

qin

ǫ0
=

ρ4πa3

3ǫ0

And so the magnitude of the electric field is

| ~Eout| =
ρa3

3ǫ0r2

By the superposition principle, the electric field due to both of the spheres is the sum of the two. Thus, for
a point x inside the overlap region:

| ~Eoutside(x)| =
ρa3

3ǫ0(x+ a
2
)2

−
ρa3

3ǫ0(x−]a
2
)2

=
ρa3

3ǫ0x2

(

(1 +
a

2x
)−2 − (1−

a

2x
)−2

)

≈
ρa3

3ǫ0x2

(

1 +
−a

x
− (1 +

a

x
)

)

=
−2ρa4

3ǫ0x3
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Since the negative charge will be a little closer than the positive charge if x is large, the net force the charge
will feel will be toward the left. Thus

~Eoutside =
−2ρa4

3ǫ0x3
x̂
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Problem 4.  

(a). Let  , Since Gauss’s law is not useful, we will have to use Coulomb’s law(∞)V = 0  
for potentials. 

V = k∫
 

 
ρ
dq      = k∫

 

 
ρ

σdsrdθ     ( θ)( (( ) ) rdx)  = k ∫
2π

0
d ∫

∞

a
σ

√r +x2 2 dx
dr 2 + 1

2
1

    kπ (( ) ) rdx  = 2 ∫
∞

a
σ

√r +x2 2 dx
dr 2 + 1

2
1

 

Given    and   , we haver = x
a2 − dx

dr = x2
a2  

kπ ( ) dxV = 2 ∫
∞

a
σ

√ x2
a +x4 4 x4

a +x4 4 2
1

x
a2  

                                       kπ dx  = 2 ∫
∞

a
σx2
a2  

                                       kπσa (− )|  = 2 2
x
1
a
∞  

                                        kπσa  = 2  

(b). 

Energy is conserved in the process. 

Ek1 +U1 = Ek2 +U2  

mv (x ) m(0) V (x )2
1 2

0 + V = ∞ = 2
1 2 + q = 0  

 v0 =√− m
2qV (x=0)         =√− m

4qkπσa  

 



Problem 5

As C3 and C4 are disconnected from the voltage source, they will not gain any charge before switch S1 is
closed. C1 and C2 are connected in parallel to the voltage source, so they will both be charged up such that
the voltage drop across them is V. Thus, before switch S2 is closed, Q1 = C1V = 3 C and Q2 = C2V = 6 C
(these are some massive capacitors!). Note that as the positive end of the battery is connected to the top
plate of C1 and C2 the top plates will have positive charge and the bottom plates will have negative charge.
When switch S1 is opened and S2 closed, there is nothing to supply new charge to the system. Thus, by
conservation of charge I get that

Q1 +Q2 +Q3 = 9 C

−Q1 −Q2 −Q4 = −9 C

−Q3 +Q4 = 0

The last equation comes from the fact that the bottom plate of C3 and the top plate of C4 are isolated from
the rest of the circuit, and thus there is no way for excess charge to travel to this region. It turns out this
last equation is redudundant as adding the first two gives you this, but this tells you that Q3 = Q4. You
may have also remembered the fact that two capacitors in series should have the same charge, and you could
have arrived at this statement this way.
As the capacitors are still in parallel, the voltage drop across each of the legs must be equal. This gives

Q1

C1

=
Q2

C2

=
Q3

C3

+
Q4

C4

= Q3

(

1

C3

+
1

C4

)

I will use these relations with the first equation of charge conservation to determine the value of Q1.

Q1 +
C2

C1

Q1 +
1

C1

(

1

C3

+
1

C4

)

−1

Q1 = 9 C

Q1 + 2Q1 +
2

3
Q1 = 9 C

Q1 =
27

11
C

Now the rest of the charges are easy to find

Q2 =
C2

C1

Q1 =
54

11
C

Q3 = Q4 = 9 C−Q1 −Q2 =
18

11
C
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