E77 Midterm Examination II

Wednesday October 26, 2005

Name :		
SID :		
$\mathbf{1}$		$\mathbf{2}$

Please circle your Laboratory section: (where your exam will be returned)
\#11: TuTh 8-10 \#12: TuTh 10-12 \#13: TuTh 12-2 \#14: TuTh 2-4 \#15: TuTh 4-6
\#16: MW 8-10 \#17: MW 10-12 \#18: MW 2-4 \#19: MW 4-6

Part	Points	Grade
1	10	
2	6	
3	6	
4	8	
5	10	
6	10	
7	12	
8	10	
9	6	
10	12	
TOTAL	90	

1. Write your name on each page.
2. Record your answers ONLY on the spaces provided.
3. You may not ask questions during the examination. You may not leave the room before the exam ends.
4. Close book exam. Two $8.5 " \times 11^{\prime \prime}$ sheets (4 pages) of handwritten notes allowed.
5. No calculators or cell phones allowed. (Please turn cell phones off)

1 Part

Assume that the following commands have been entered in the Matlab command window:

```
>> clear
>> test(1).A = 4;
>> test(1).B = [1, 2];
>> test(2).A = 6;
>> test(2).B = [4, 5];
>> pad = [1, 2, 3;...
    4, 5, 6;...
    7, 8, 9];
>> primes = [2, 3, 5, 7, 11, 13];
```

Write down the output of the following commands:
(2)
(2)
pad =

2 Part

Assume that the following Matlab statements have been executed

```
>> clear all
>>A = [-1 0 3];
>>B = [0 0 1];
>>C = [1 1 0];
```

Write the output after the following statements are executed:
1.
. $\gg(C \& A) \mid$
B
ans=
(2) 2. $\quad \gg(C \mid A) \& B$
ans=
(2) 3. $\quad \gg C(A>B)$
ans=

3 Part

Below are two 7 -line blocks of code. Given a scalar value for the variable x , each code assigns a corresponding scalar value to the variable y.

These two blocks of code do not produce the same results for all values of x .
(3) 1. Determine a value of x for which the two codes produce the same value of y .
$\mathrm{x}=$ \qquad
2. Determine a value of x for which the two codes will not produce the same value of y .

$$
x=
$$

\qquad

4 Part

Write a function called find_num, which has the following syntax and properties:
Syntax: $\mathrm{n}=$ find_num (A, b)

- If A is a vector or a matrix and b is a scalar, find_num (A, b) returns the number of elements of A that are equal to b .
- For example,

```
>> find_num([3 7 9; 1 2 7],7)
ans = 2
```

When writing your function, you must comply with the following instructions:
(i) The function must have at most 4 lines of code, including the function declaration (it is not acceptable to concatenate multiple lines of code, using several ; 's or ,'s).
(ii) You must use the sum function, which is described in the bottom section of this page.

Answer:

```
function n = find_num(A,b)
```

The function sum has the following syntax and properties:

```
Syntax: n = sum(A)
```

- If A is either a row or a column vector, sum (A) returns the sum of the elements of A.
- If A is a matrix, sum (A) treats the columns of A as vectors, returning a row vector of the sums of each column.
- For example,

```
>> sum([3 7 9; 1 2 7]) }\quad>>\operatorname{sum([ [ 1 ; 2 ; 3])
ans=4 9 16 ans = 6
```


5 Part

Consider the following function test:

```
function g = test(a,b)
while b ~=0
    r = rem(a,b);
    a=b;
    b=r;
end
g = a;
```

Write the output of the following:
(5) 1. $\quad \gg$ test $(36,40)$

```
ans =
```

(5) 2. $\quad \gg$ test (test $(15,5), 3)$

$$
\text { ans }=
$$

The function rem has the following syntax and properties:
Syntax: $R=\operatorname{rem}(X, Y)$

- rem (X, Y) returns the remainder after the division of X by Y.
- Examples:

```
>> rem(3,2)
ans = 1
>> rem(2,0)
>> rem(4,2)
ans = NaN ans = 0
```

```
>> rem(2,3)
```

>> rem(2,3)
ans = 2

```

\section*{6 Part}

Write the output after running the following scripts.
(3) 1. \(a=0\);
for \(k=7: 5\), \(a=a+k ;\)
end
a
ans=
(3) 2. \(a=0\); for \(k=7:-1: 5\), \(a=a+k ;\)
end
a
\(\underline{a n s}=\)
(4) \(3 . \quad A=\left[\begin{array}{lll}4 & 5 ; 7 & 6\end{array}\right.\);
\(B=\operatorname{zeros}(2,2)\);
for \(k=1: 2\),
for \(m=1: 2\),
\(B(m, k)=A(k, m) ;\)
end
end
B
ans=

\section*{7 Part}

John, Bob, and Joe own lemonade stands. Each went to the same store, and made the following purchases to get inventories for their stands:
- John spent \(D_{1}\) dollars and purchased:
\(S_{1} \quad\) pounds of sugar
\(L_{1} \quad\) pounds of lemons
\(W_{1} \quad\) gallons of water
- Bob spent \(D_{2}\) dollars and purchased:
\(S_{2} \quad\) pounds of sugar
\(L_{2} \quad\) pounds of lemons
\(W_{2} \quad\) gallons of water
- Joe spent \(D_{3}\) dollars and purchased:
\(S_{3} \quad\) pounds of sugar
\(L_{3} \quad\) pounds of lemons
\(W_{3} \quad\) gallons of water
(5) 1. Let \(x_{1}, x_{2}\) and \(x_{3}\) respectively denote the unit price per pound of sugar and lemons and gallon of water. Write the three equations that determine the amounts \(D_{1}, D_{2}\) and \(D_{3}\) respectively spent by John, Bob and Joe.

ANS: \(\qquad\)
(2) 2. The 3 equations above can be written in matrix form:
\[
A x=b,
\]
where \(A\) is a \(3 \times 3\) matrix, and \(x\) and \(b\) are the \(3 \times 1\) vectors. Clearly identify all element of the matrix \(A\), and the vector \(b\).
\(A=\left[\quad x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \quad b=[]\right.\)
(Continues on the next page)
(2) 3. Write a Matlab command that you would use to determine the vector x , which solves \(\mathrm{A} \mathrm{x}=\mathrm{b}\), assuming that the matrix A and the vector b have been defined.
>>
\(\qquad\)
(2) 4. Issue a one-line Matlab command that produces a logical true if the exact solution of the equation \(\mathrm{A} \mathrm{x}=\mathrm{b}\) exists AND is unique, and false otherwise.
>>```

