E77 Midterm Examination II

Wednesday October 26, 2005

Section:

1 2 (Please circle your lecture section)

Please circle your Laboratory section: (where your exam will be returned)

#11: TuTh 8-10	#12: TuTh 10-12	#13: TuTh 12-2	#14: TuTh 2-4	#15: TuTh 4-6
#16: MW 8-10	#17: MW 10-12		#18: MW 2-4	#19: MW 4-6

Part	Points	Grade
1	10	
2	6	
3	6	
4	8	
5	10	
6	10	
7	12	
8	10	
9	6	
10	12	
TOTAL	90	

- 1. Write your name on each page.
- 2. Record your answers <u>ONLY</u> on the spaces provided.
- 3. You may <u>not</u> ask questions during the examination. You may <u>not</u> leave the room before the exam ends.
- 4. Close book exam. Two $8.5^{"} \times 11^{"}$ sheets (4 pages) of handwritten notes allowed.
- 5. No calculators or cell phones allowed. (Please turn cell phones off)

Assume that the following commands have been entered in the Matlab command window:

Write down the output of the following commands:

(2) 1. >> primes(test(1).A)

```
ans =
```

(2) 2. >> primes([test.A])

ans =

(3) 3. >> pad([test.A])

```
ans =
```

(3) 4. >> pad(1:2,2)=test(2).B'

pad =

Numbers between parenthesis are the points allocated to each question.

Assume that the following Matlab statements have been executed

>> clear all
>>A = [-1 0 3];
>>B = [0 0 1];
>>C = [1 1 0];

Write the output after the following statements are executed:

(2) 1. >> (C & A) | B

ans=

(2) 2. >> (C | A) & B

ans=

(2) 3. >> C(A>B)

ans=

Below are two 7-line blocks of code. Given a scalar value for the variable \mathbf{x} , each code assigns a corresponding scalar value to the variable \mathbf{y} .

Code 1	Code 2
if x < 5	if x < 10
y = 2* x;	y = x;
elseif x < 10	elseif x < 5
y = x;	y = 2* x;
else	else
y = 10;	y = 10;
end	end

These two blocks of code do \underline{not} produce the same results for all values of \mathbf{x} .

(3) 1. Determine a value of x for which the two codes produce the same value of y.

x = _____

(3) 2. Determine a value of x for which the two codes will not produce the same value of y.

x =

(8)

Write a function called find_num, which has the following syntax and properties:

Syntax: n = find_num(A,b)

- If A is a vector or a matrix and b is a scalar, find_num(A,b) returns the number of elements of A that are equal to b.
- For example,

```
>> find_num([3 7 9; 1 2 7],7)
ans = 2
```

When writing your function, you must comply with the following instructions:

- (i) The function must have at most 4 lines of code, including the function declaration (it is not acceptable to concatenate multiple lines of code, using several *i*'s or *,*'s).
- (ii) You must use the sum function, which is described in the bottom section of this page.

Answer:

function $n = find_num(A,b)$

The function sum has the following syntax and properties:

Syntax: n = sum(A)

- If A is either a row or a column vector, sum(A) returns the sum of the elements of A.
- If A is a matrix, sum(A) treats the columns of A as vectors, returning a row vector of the sums of each column.
- For example,

```
>> sum([3 7 9; 1 2 7]) >> sum([ 1 ; 2 ; 3])
ans = 4 9 16 ans = 6
```

Consider the following function test:

```
function g = test(a,b)
while b ~=0
    r = rem(a,b);
    a=b;
    b=r;
end
g = a;
```

Write the output of the following:

```
(5) 1. >> test(36,40)
```

```
<u>ans =</u>
```

```
(5) 2. >> test(test(15,5),3)
```

```
ans =
```

The function rem has the following syntax and properties:

Syntax: R = rem(X,Y)

- rem(X,Y) returns the remainder after the division of X by Y.
- Examples:

>> rem(2,3)
ans = 2
>> rem(4,2)
ans = 0

Write the output after running the following scripts.

```
a=0;
      1.
(3)
            for k = 7:5,
               a=a+k;
            end
            а
        ans=
            a=0;
(3)
      2.
            for k = 7:-1:5,
               a=a+k;
            end
            а
        ans=
            A=[4 5;7 6];
(4)
      3.
            B = zeros(2,2);
            for k=1:2,
                    for m = 1:2,
                        B(m,k) = A(k,m);
                    end
            end
            В
```

<u>ans=</u>

John, Bob, and Joe own lemonade stands. Each went to the same store, and made the following purchases to get inventories for their stands:

- John spent D_1 dollars and purchased:
 - S_1 pounds of sugar
 - L_1 pounds of lemons
 - W_1 gallons of water
- Bob spent D_2 dollars and purchased:
 - S_2 pounds of sugar
 - L_2 pounds of lemons
 - W_2 gallons of water
- Joe spent D_3 dollars and purchased:
 - S_3 pounds of sugar
 - L_3 pounds of lemons
 - W_3 gallons of water
- (5) 1. Let x_1, x_2 and x_3 respectively denote the unit price per pound of sugar and lemons and gallon of water. Write the three equations that determine the amounts D_1 , D_2 and D_3 respectively spent by John, Bob and Joe.

ANS:_____

(2) 2. The 3 equations above can be written in matrix form:

 $A\,x=b\,,$

where A is a 3 \times 3 matrix, and x and b are the 3 \times 1 vectors. Clearly identify all element of the matrix A, and the vector b.

$$A = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad b = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

(Continues on the next page)

(2) 3. Write a Matlab command that you would use to determine the vector \mathbf{x} , which solves $\mathbf{A} = \mathbf{b}$, assuming that the matrix \mathbf{A} and the vector \mathbf{b} have been defined.

>>_____

4. Issue a one-line Matlab command that produces a logical true if the exact solution of the equation A x = b exists AND is unique, and false otherwise.

>>_____