Mid-term Examination (Fall 2013)

Problem 1. A truss structure is shown in Figure 1. Use the method of section to find the internal forces in bar JI and bar JC. (30 points)

Figure 1: A truss structure under multiple loads

Problem 2. A planar structure consists of two bent bars as shown in Fig. 2. Determine the reaction forces at A and B caused by the application of a vertical force P at C.

Figure 2: A three-hinge arch truss system
(25 points)

Problem 3.

For a two-bar system shown in the figure, determine: (a) the flexibility constant for each bar, (b) the compressive force in the bars after a temperature rise of $100^{\circ} \mathrm{C}$, and (c) the stress in each bar.

Hints:
First write down the displacement compatibility condition. Thermal strain: $\epsilon_{T}=\alpha \Delta T ; \Delta=$ $\frac{L}{E A} P=f P .(25$ points $)$

Figure 3: An axially deformed bar with two different cross sections and two different materials.

Problem 4. Multiple Choose Questions (Each question 5 points):
A. Which of the following stress states are possible equilibrium stress state?

$$
(a):\left[\begin{array}{cc}
5 & 3 \\
3.01 & 4
\end{array}\right],(b):\left[\begin{array}{ll}
5 & 3 \\
3 & 4
\end{array}\right],(c):\left[\begin{array}{cc}
0 & 2.99 \\
3 & 4
\end{array}\right],(d):\left[\begin{array}{cc}
-5 & 3 \\
3 & -3
\end{array}\right]
$$

B. Which of the following statements are incorrect: The shear strain

Figure 4: Second moment for a semi-circle.
(a) is a relative elongation;
(b) is the change of angle;
(c) has nothing to do with temperature;
(d) has something to do with change of shape;
(e) has something to do with change of volume.
C. The semi-circle shown in Fig. 4 has the radius r, and area $A=\pi r^{2} / 2$, and the moment of inertia with respect to axis $A A^{\prime}, I_{A A^{\prime}}=\pi r^{4} / 8$. The centroidal axis is x^{\prime}-axis. Which of the following is the moment of inertia w.r.t. x -axis for the semi-circle shown in the figure:
(a) $I_{x}=\frac{\pi r^{4}}{8}+(a+b)^{2} A ;(b) I_{x}=\frac{\pi r^{4}}{8}+a^{2} A ;(c) I_{x}=\frac{\pi r^{4}}{8}+b^{2} A ; \quad(d) I_{x}=\frac{\pi r^{4}}{8}-a^{2} A+b^{2} A ;(e) I_{x}=\frac{\pi r^{4}}{8}+\left(a^{2}+b^{2}\right) A$.

Hint: Parallel axis theorem:

$$
I_{x}=I_{C x}+d^{2} A
$$

(D) For the structure shown in Fig. 1, which of the following members are not zero-force member ?
(a)GF; (b)HD; (c)IC; (d)DE; (e)EF; (f)GE.
(20 points)

