
Problem 1

a)

The heat the ice absorbs in melting and getting to the same temperature as the
water is

Qice = ML+Mc∆T = 80000 cal + 1000Tf cal/◦C.

By conservation of energy, this must be the heat given off by the water cooling

Qwater = Mc∆T = 1000 cal/◦C(100◦C− Tf )

Setting the two equal gives

Tf =
80000 cal− 100000 cal

−2000 cal/◦C
= 10◦C

b)

The entropy change of the ice is

S =
ML

T
+MC

∫ 283K

273K

dT

T
=

80000

273

cal

K
+ 1000 ln

(

283

273

)

cal

K
≈ 330

cal

K
.

(I used ln(1 + x) ≈ x to get a value for the logarithm). The entropy change of
the water is

S = MC

∫ 283K

373K

dT

T
= 1000 ln

(

283

373

)

cal

K
≈ −280

cal

K

(I used ln(1 + x) ≈ x− x2/2 to get a value for the logarithm, since this is a bit
further from 1). So the total entropy change is roughly 50 cal

K . As expected from
the second law, it is positive.

Problem 2

a)

The cycle is a heat engine when the integral around the whole cycle is positive.
This happens if the cycle in run clockwise.

b)

The total work is the sum of the work along the isotherms

W = nR(T1 − T2) ln

(

V2

V1

)

.
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The heat absorbed, Qh is

Qh = nCv(T1 − T2) + nRT1 ln

(

V2

V1

)

.

Cv = 3
2R, as this is a monatomic gas. So the efficiency is

e =
W

Qh

=
nR(T1 − T2) ln

(

V2

V1

)

n 3
2R(T1 − T2) + nRT1 ln

(

V2

V1

) =
(T1 − T2) ln

(

V2

V1

)

3
2 (T1 − T2) + T1 ln

(

V2

V1

) =
1− T2

T1

1 + 3
2

1−
T2

T1

ln(
V2

V1
)

Which is clearly less efficient than a Carnot engine.

Problem 3

a)

Suppose the particle has just hit the wall. If the particle has a speed v, this
means it will get to the wall again once it has traveled a distance 2L. Thus,
the time between collisions with a wall is ∆t = 2L

v
. Since the gas molecules do

not interact with one another and the collisions with the wall are elastic, v is a
constant.

b)

When the particle collides with the wall, its momentum changes by ∆p = m∆v.
Since the collisions are elastic, ∆v = 2v. Thus, the average force a particle exerts
is

F̄1 =
∆p

∆t
=

2mv2

2L
=

mv2

L
.

The box contains many particles, each of which contribute this much force.
Thus, the average total force due to all particles is

F̄ =
N
∑

i=1

mv2i
L

=
m

L

N
∑

i=1

v2i .

Here, vi is the speed of the ith particle. The sum is just the definition of the
average of the squared velocities times the number of particles. Also, in the
limit that N is large, the timescales that F fluctuates on will be so small that
they will not be detectable. Thus

F =
mN

L
v̄2.
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c

Plugging in the definition gives

F =
NkBT

L

So the equation of state is

FL = NkBT

You may notice this looks a lot like the ideal gas law!
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Problem 4

The first thing we want to recognize is that the processes occurring during the transformation are adiabatic
processes of ideal gases. The relevant equations will then be

PV = nRT (1)

TiV
γ−1

i = TfV
γ−1

f (2)

PiV
γ
i = PfV

γ
f . (3)

The first equation is the ideal gas law, and the second and third (actually just two presentations of the same
equation) give the relationships between the state variables during an adiabatic process. The exponent γ
is related to the number f of quadratic degrees of freedom by γ = (f + 2)/f . The gas in container A is
diatomic, so fA = 5 and γA = 7/5. The gas in container B is monatomic, so fB = 3 and γB = 5/3.

Throughout the solution, we’ll refer to the initial and final pressures of A and B by PAi, PAf , PBi, and PBf ,
respectively, and similarly for temperature and volume.

A.

Let’s start with gas B. We know its initial and final temperatures, and we know its initial pressure, so we
can use the ideal gas law to find its initial volume:

VBi =
nRTBi

PBi
=

nRT0

P0

. (4)

Then we can use equation (2) to find its final volume:

TBiV
2/3
Bi = TBfV

2/3
Bf −→ VBf = VBi

(

TBi

TBf

)3/2

=
nRT0

P0

(

T0

2T0

)3/2

=
1

2
√
2

nRT0

P0

. (5)

Now we turn to gas A. We don’t know its final temperature, so using equation (2) doesn’t look feasible.
What about equation (3)? We know the initial pressure and volume, but we don’t know the final pressure.
However, we are told that the divider is free to move. This means that the two gases should be in mechanical
equilibrium. In other words, their final pressures are equal, and we can use the ideal gas law to determine
the final pressure of gas B, given that we know its final temperature and volume. Then:

PAf = PBf =
nRTBf

VBf
=

2nRT0

nRT0

· 2
√
2P0 = 4

√
2P0. (6)

Now we can use equation (3):

PAiV
7/5
Ai = PAfV

7/5
Af −→ VAf = VAi

(

PAi

PAf

)5/7

=

(

nRT0

P0

)(

P0

4
√
2P0

)5/7

= 2−25/14nRT0

P0

(7)

where we again used the ideal gas law to find the initial volume.

B.

Because all processes in this transformation are adiabatic (Q = 0), the first law of thermodynamics simplifies:

∆Eint = Q+W = W, (8)

where we’ve reversed the sign convention of work because the problem asks for work done on, rather than
by the piston. But ∆Eint is simple to find:

∆Eint =
f

2
nR(Tf − Ti). (9)

1



The change in the internal energy of gas B is then just

∆EB =
3

2
nR(2T0 − T0) =

3

2
nRT0. (10)

To find the change in energy of gas A, we need the final temperature. We have everything we need to plug
into the ideal gas law to find it:

TAf =
PAfVAf

nR
=

(4
√
2P0)

(

2−25/14nRT0/P0

)

nR
= 25/7T0. (11)

The change in energy is then

∆EA =
5

2
nR(25/7T0 − T0) =

5

2
(25/7 − 1)nRT0. (12)

Adding the contributions from A and B, we find the total change in energy, which is equal to the total work
done on the piston:

W =

(

3

2
+ 5 · 2−2/7 −

5

2

)

nRT0 =
(

5 · 2−2/7 − 1
)

nRT0 (13)
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