ME 185 Midterm \#1

(Oct. 18, 2007)

1. (10 pts.) Consider a cylindrical body occupying the reference configuration defined by $A<R<B$, $-L / 2<Z<L / 2,0 \leq \theta<2 \pi$. Suppose the body is turned inside out (everted) so that after deformation it occupies a new cylindrical region (SEE FIGURE ON REVERSE). Thus, the deformation maps the material point with reference position

$$
\mathbf{X}=R \mathbf{e}_{r}(\theta)+Z \mathbf{k}
$$

to its final position

$$
\mathbf{x}=r(R) \mathbf{e}_{r}(\theta)+z(Z) \mathbf{k}
$$

where $a<r<b$ and $z(Z)=-Z$ (i.e., the cross-sectional plane $Z=L / 2$ in the reference configuration is mapped to the plane $z=-L / 2$ in the current configuration, etc.). Also, the inside of the reference cylinder is mapped to the outside of the deformed cylinder, and the outside is mapped to the inside. Thus, $r(A)=b$ and $r(B)=a$.
(a) Find the deformation gradient \mathbf{F} assuming the function $r(R)$ to be known. What restrictions must be imposed on this function to ensure that the deformation is physically possible? Find $r(R)$ meeting the stated boundary conditions if the deformation is isochoric.
(b) Compute $\mathbf{C}=\mathbf{F}^{T} \mathbf{F}$ and obtain \mathbf{U} by inspection. [Hint: $\mathbf{U}^{2}=\mathbf{C}$]. Using your result, compute the rotation factor \mathbf{R} in the polar decomposition $\mathbf{F}=\mathbf{R U}$.
2. (10 pts.) Recall that the gradient of a scalar field $\phi(\mathbf{x})$ may be represented in the form $\nabla \phi=\phi_{, i} \mathbf{e}_{i}$, where $\phi_{, i}=\partial \phi / \partial x_{i}$ and x_{i} are Cartesian coordinates. Also recall that the divergence of a vector field $\mathbf{v}(\mathbf{x})$ may be represented in the form $\operatorname{div} \mathbf{v}=v_{i, i}$ where $v_{i}=\mathbf{e}_{i} \cdot \mathbf{v}$, and the curl may be represented in the form $\operatorname{curl} \mathbf{v}=e_{i j k} v_{k, j} \mathbf{e}_{i}$.

Use these facts to demonstrate that, if $\mathbf{u}=\operatorname{curl} \mathbf{v}$ and $\mathbf{w}=\operatorname{curl} \mathbf{u}$, then

$$
w_{i}=\psi_{, i}-v_{i, j j}
$$

where $\psi=\operatorname{div} \mathbf{v}$. This is the component representation of the identity

$$
\operatorname{curl}(\operatorname{curl} \mathbf{v})=\operatorname{grad}(\operatorname{div} \mathbf{v})-\Delta \mathbf{v}
$$

where $\Delta=\operatorname{div}(\operatorname{grad})$ is the Laplacian operator. [Hint: $e_{k i j} e_{k p q}=\delta_{i p} \delta_{j q}-\delta_{i q} \delta_{j p}$.]

