Name:

SID:
To get credit for work, you must show your work. Box in your final answer.
No calculators are allowed. So you may leave your answer as a numerical expression. Examples are listed below.

$$
\begin{gathered}
123^{2}+17^{3} e^{2} \\
\Phi\left(\frac{123-100}{17}\right)
\end{gathered}
$$

All summations must be evaluated for full credit. Scan through the test first to see which problems are easier for you. Manage your time.

$\#$	Your Score	Points Possible
1		10
2		10
3		10
4		10
5		50
Total		

(Blank for scratch work.)

1. Suppose the X_{i} 's are all independent with the following distribution.

$$
\begin{equation*}
X_{i} \sim \operatorname{Pois}\left(\lambda_{i}=81\left(\frac{1}{3}\right)^{i}\right) \tag{5pt}
\end{equation*}
$$

a) Let $S_{4}=X_{1}+\cdots+X_{4}$. Find $P\left(S_{4}=50\right)$.
b) Let $S=\lim _{n \rightarrow \infty}\left(X_{1}+\cdots+X_{n}\right)$. Find $E\left(S^{2}\right)$.
2. Suppose $X \sim \operatorname{Geom}\left(p_{1}\right)$ on $\{1,2,3, \ldots\}, Y \sim \operatorname{Geom}\left(p_{2}\right)$ on $\{1,2,3, \ldots\}$, and $X \perp Y$. Let $S=X+Y$.
a) Assuming $p_{1}=p_{2}=p$, find $P(S=s)$.
b) Assuming $p_{1} \neq p_{2}$, find $P(S=s)$.
c) Find $P(Y \geq X)$.
3. A bag contains 3 types of coins.

$(h h)$	$(h t)$	$(t t)$
7 double headed coins	2 regular coins	1 double tailed coin

a) $P\left(H_{1}\right)$
b) $P\left(H_{2}\right)$
c) $P\left(H_{2} \mid H_{1}\right)$
d) Are H_{1} and H_{2} independent? Justify your answer.
4. Suppose $X \sim \operatorname{Pois}(\mu), Y \sim \operatorname{Geom}(p)$ on $\{0,1,2, \ldots\}$, and $X \perp Y$.
a) Find $P(X \geq 1)$.
b) Find $P(Y \geq y)$.
c) Find $P(Y \geq X)$.
5. In a class of 85 students, let X be the number of students who share a birthday with at least two other members of the class.
a) Write $E(X)$ as an unsimplified expression. (There should be no summation.)
b) Estimate the probability using a Poisson distribution that at least 3 people have the same birthday. Your solution should not depend on part a).

