Stat 134 Midterm Instructor: Mike Leong

Name:

SID:

To get credit for work, you **must** show your work. Box in your final answer.

No calculators are allowed. So you may leave your answer as a numerical expression. Examples are listed below.

$$\frac{123^2 + 17^3 e^2}{\Phi\left(\frac{123 - 100}{17}\right)}$$

All summations must be evaluated for full credit. Scan through the test first to see which problems are easier for you. Manage your time.

#	Your Score	Points Possible
1		10
2		10
3		10
4		10
5		10
Total		50

Summer 2014

(Blank for scratch work.)

1. Suppose the X_i 's are all independent with the following distribution.

$$X_i \sim Pois\left(\lambda_i = 81\left(\frac{1}{3}\right)^i\right)$$

$$S_4 = 50).$$
(5 pt)

a) Let $S_4 = X_1 + \dots + X_4$. Find $P(S_4 = 50)$.

b) Let
$$S = \lim_{n \to \infty} (X_1 + \dots + X_n)$$
. Find $E(S^2)$. (5 pt)

- 2. Suppose $X \sim Geom(p_1)$ on $\{1, 2, 3, ...\}$, $Y \sim Geom(p_2)$ on $\{1, 2, 3, ...\}$, and $X \perp Y$. Let S = X + Y.
- a) Assuming $p_1 = p_2 = p$, find P(S = s). b) Assuming $p_1 \neq p_2$, find P(S = s). c) Find $P(Y \ge X)$. (2 pt) (4 pt)

(4 pt)

3. A bag contains 3 types of coins.

	(<i>hh</i>)	(<i>ht</i>)	(<i>tt</i>)				
	7 double headed coins	2 regular coins	1 double tailed coin				
_	Select a coin from the bag and flip it twice. Let H_i be the event the <i>i</i> th toss lands heads. Find:						
a)	$P(H_1)$		(3 pt)				
b)	$P(H_2)$		(1 pt)				
c)	$P(H_2 H_1)$		(4 pt)				
d)	Are H_1 and H_2 independent? Ju	stify your answer.	(2 pt)				

- 4. Suppose $X \sim Pois(\mu)$, $Y \sim Geom(p)$ on $\{0, 1, 2, ...\}$, and $X \perp Y$.
- a) Find $P(X \ge 1)$.(2 pt)b) Find $P(Y \ge y)$.(3 pt)c) Find $P(Y \ge X)$.(5 pt)

5.	In a class of 85 students, let <i>X</i> be the number of students who share a birthday with at least
	two other members of the class.

a)	Write $E(X)$ as an	unsimplified	expression.	(There should be no summation.)	(5 pt)
----	--------------------	--------------	-------------	---------------------------------	--------

b) Estimate the probability using a Poisson distribution that at least 3 people have the same birthday. Your solution should not depend on part a). (5 pt)