Physics 137A

Lecture $2 \diamond$ Spring 2014
University of California at Berkeley
Final Exam
May 16, 2014, 3-6pm, 2 LeConte
6 problems $\diamond 180$ minutes $\diamond 100$ points

Problem $1 \diamond$ TWO SPIN- $\frac{1}{2}$ PARTICLES IN A SINGLET STATE
10points
Consider a lab with with two experimenters: you and your favorite lab partner, studying a system of two distinguishable spin- $\frac{1}{2}$ particles is in a spin-singlet state - the state with total angular momentum eigenvalue 0 given by:

$$
|\chi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)
$$

You are specializing in measuring the spin components of one of the particles ($S_{1 x}, S_{1 z}$, and so on) while your lab partner specializes in measuring the spin components of the other particles ($S_{2 x}, S_{2 z}$, and so on).
$\diamond \mathrm{A} \diamond$ What is the probability for you to measure $S_{1 z}$ obtaining $\frac{\hbar}{2}$ if your lab partner makes no measurement?
$\diamond \mathrm{B} \diamond$ Now the experiment is repeated but this time you are measuring $S_{1 x}$. What is the probability you obtain $\frac{\hbar}{2}$ if your lab partner is still not doing anything?
$\diamond \mathrm{C} \diamond$ Finally, the experiment is repeated for the third time and this time your lab partner decides to contribute: makes a measurement of $S_{2 z}$ and obtains $\frac{\hbar}{2}$. Then you get to work. What do you expect to be the outcome of your measurement if you measure $S_{1 z}$? How about if you measure $S_{1 x}$?

Problem 2 \diamond CLEBSH-GORDAN COEFFICIENTS

30points
Consider a spin- $\frac{1}{2}$ particle in a state with orbital angular momentum $l=1$. The goal of this problem is to calculate the Clebsh-Gordan coefficients that allow us to construct the states of definite total angular momentum \hat{J} from the simultaneous eigenstates of spin and orbital angular momentum. Label the states in the "old basis" (the eigenstates of $\hat{L}^{2}, \hat{L}_{z}, \hat{S}^{2}$, and \hat{S}_{z}) by $\left|l m_{l} s m_{s}\right\rangle$ and the states in the "new basis" (eigenstates of \hat{J}^{2} and \hat{J}_{z}) by $\left|j m_{j}\right\rangle$.
$\diamond \mathrm{A} \diamond$ Write all the states in the "new basis" in terms of states in the "old basis" and label the non-zero coefficients. How many non-zero coefficients is there?
$\diamond \mathrm{B} \diamond$ Determine all these coefficients. For example, you can do this by starting with the state with maximum j and m_{j} and using lowering operators as well as orthonormality repeatedly.
$\diamond \mathrm{C} \diamond$ What is the expectation value of \hat{L}_{z} in the state with the lowest possible value of j and $m_{j}=j$? What is the expectation value of \hat{S}_{z} in this state?

Problem $3 \diamond$ FERMION GAS IN A HARMONIC TRAP

15points
Consider a very large number N of noninteracting electrons of mass m_{e}.
$\diamond \mathrm{A} \diamond$ The electrons are confined by a one-dimensional harmonic oscillator potential $V(x)=\frac{1}{2} m_{e} \omega^{2} x^{2}$. What is the value of the ground state energy? What is the value of the Fermi energy?
$\diamond \mathrm{B} \diamond$ Now the electrons are confined to a three-dimensional version of this trap by the potential $V(\vec{r})=\frac{1}{2} m_{e} \omega^{2} r^{2}$. What is the value of the Fermi energy for this system?

Problem $4 \diamond$ VIRIAL THEOREM

15 points
$\diamond \mathrm{A} \diamond$ Prove the virial theorem in one dimension, i.e. show that the expectation value of kinetic energy T in a stationary state relates to potential energy as:

$$
2\langle T\rangle=\left\langle x \frac{d V}{d x}\right\rangle
$$

$\diamond \mathrm{B} \diamond$ Show how this theorem generalizes to three dimensional space.

Problem $5 \diamond$ A STATIONARY STATE OF THE HARMONIC OSCILLATOR

A particle is in the $n^{t h}$ stationary state of the harmonic oscillator $|n\rangle$.
$\diamond \mathrm{A} \diamond$ Find expectation values of $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$.
$\diamond \mathrm{B} \diamond$ Find expectation values of $\langle p\rangle$ and $\left\langle p^{2}\right\rangle$.
$\diamond \mathrm{C} \diamond$ Check that uncertainty principle is satisfied.
$\diamond \mathrm{D} \diamond$ Find expectation values of kinetic and potential energy and check that the virial theorem is satisfied.

Problem $6 \diamond$ STATES AND OPERATORS FOR A SPIN-1 PARTICLE

15points
Consider a spin-1 particle with the usual basis states $\{|1\rangle,|0\rangle,|-1\rangle\}$ of eigenvectors of the \hat{S}_{z}, the z-component of spin, defined by $\hat{S}_{z}|m\rangle=m \hbar|m\rangle$. We can define three normalized states $|x\rangle,|y\rangle,|z\rangle$ by $\hat{S}_{x}|x\rangle=0, \hat{S}_{y}|y\rangle=0$, and $\hat{S}_{z}|z\rangle=0$.
$\diamond \mathrm{A} \diamond$ Express the states $|x\rangle,|y\rangle,|z\rangle$ in the basis $\{|1\rangle,|0\rangle,|-1\rangle\}$ and then show that they are mutually orthogonal (and therefore these three states are a good orthonormal basis in its own right.)
$\diamond \mathrm{B} \diamond$ Define an operator $\hat{Q}=a|x\rangle\langle x|+b|y\rangle\langle y|+c|z\rangle\langle z|$, with a, b, and c all different real numbers. List eigenstates and corresponding eigenvalues of this operator.
$\diamond \mathrm{C} \diamond$ Calculate $\langle 1| \hat{Q}|-1\rangle$ and hence show that \hat{Q} is not an operator of the form $\hat{Q}=\vec{B} \cdot \hat{\vec{S}}$ for any magnetic field \vec{B}.
$\diamond \mathrm{D} \diamond$ Explain what your conclusion in part C says about the possibility of designing a non-uniform \vec{B} for a Stern-Gerlach experiment that would allow you to distinguishing the states $|x\rangle,|y\rangle$, and $|z\rangle$.

You might find these matrix representations for $s=1$ spin operators (in the basis $\{|1\rangle,|0\rangle,|-1\rangle\}$) useful:

$$
S_{x}=\sqrt{2} \hbar\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad S_{y}=\sqrt{2} \hbar\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right), \quad S_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Mathematical Formulas

Trigonometry:

$$
\begin{aligned}
& \sin (a \pm b)=\sin a \cos b \pm \cos a \sin b \\
& \cos (a \pm b)=\cos a \cos b \mp \sin a \sin b
\end{aligned}
$$

Law of cosines:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

Gradient operator:

$$
\vec{\nabla}=\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}=\frac{\partial}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \hat{\phi}
$$

Laplace operator:

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{\partial^{2}}{\partial \phi^{2}}\right)
$$

Integrals:

$$
\begin{aligned}
& \int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x) \\
& \int x \cos (a x) d x=\frac{1}{a^{2}} \cos (a x)+\frac{x}{a} \sin (a x)
\end{aligned}
$$

Exponential integrals:

$$
\int_{0}^{\infty} x^{n} e^{-x / a} d x=n!a^{n+1}
$$

Gaussian integrals:

$$
\begin{gathered}
\int_{0}^{\infty} x^{2 n} e^{-x^{2} / a^{2}} d x=\sqrt{\pi} \frac{(2 n)!}{n!}\left(\frac{a}{2}\right)^{2 n+1} \\
\int_{0}^{\infty} x^{2 n+1} e^{-x^{2} / a^{2}} d x=\frac{n!}{2} a^{2 n+2}
\end{gathered}
$$

Integration by parts:

$$
\int_{a}^{b} f \frac{d g}{d x} d x=-\int_{a}^{b} \frac{d f}{d x} g d x+\left.f g\right|_{a} ^{b}
$$

Fundamental Equations

Schrödinger equation:

$$
i \hbar \frac{\partial \Psi}{\partial t}=\hat{H} \Psi
$$

Time-independent Schrödinger equation:

$$
\hat{H} \psi=E \psi, \quad \Psi=\psi e^{-i E t / \hbar}
$$

Hamiltonian operator:

$$
\hat{H}=\hat{T}+\hat{V}=\frac{\hat{p}^{2}}{2 m}+V=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V
$$

Position and momentum representations:

$$
\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \exp \left(\frac{i p x}{\hbar}\right), \quad \psi(x)=\langle x \mid \psi\rangle, \quad \phi(p)=\langle p \mid \phi\rangle, \quad\langle x| \hat{p}|\psi\rangle=-i \hbar \frac{d}{d x} \psi(x)
$$

Momentum operator:

$$
\hat{p}_{x}=-i \hbar \frac{\partial}{\partial x}, \quad \hat{p}_{y}=-i \hbar \frac{\partial}{\partial y}, \quad \hat{p}_{z}=-i \hbar \frac{\partial}{\partial z}
$$

Time dependence of an expectation value:

$$
\frac{d\langle\hat{Q}\rangle}{d t}=\frac{i}{\hbar}\langle[\hat{H}, \hat{Q}]\rangle+\left\langle\frac{\partial \hat{Q}}{\partial t}\right\rangle
$$

Generalized uncertainty principle:

$$
\sigma_{A} \sigma_{B} \geq\left|\frac{1}{2 i}\langle[\hat{A}, \hat{B}]\rangle\right|
$$

Canonical commutator:

$$
\left[\hat{x}, \hat{p}_{x}\right]=i \hbar, \quad\left[\hat{y}, \hat{p}_{y}\right]=i \hbar, \quad\left[\hat{z}, \hat{p}_{z}\right]=i \hbar
$$

Angular momentum:

$$
\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}, \quad\left[\hat{L}_{y}, \hat{L}_{z}\right]=i \hbar \hat{L}_{x}, \quad\left[\hat{L}_{z}, \hat{L}_{x}\right]=i \hbar \hat{L}_{y}
$$

Raising and lowering operator for angular momentum:

$$
\hat{L}_{ \pm}=\hat{L}_{x} \pm i \hat{L}_{y}, \quad\left[\hat{L}_{+}, \hat{L}_{-}\right]=2 \hbar \hat{L}_{z}, \quad \hat{L}_{ \pm}|l, m\rangle=\hbar \sqrt{l(l+1)-m(m \pm 1)}|l, m \pm 1\rangle
$$

Raising and lowering operator for harmonic oscillator:

$$
\hat{a}_{ \pm}=\frac{1}{\sqrt{2 \hbar m \omega}}(m \omega \hat{x} \mp i \hat{p}), \quad\left[\hat{a}_{-}, \hat{a}_{+}\right]=1, \quad \hat{a}_{+}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad \hat{a}_{-}|n\rangle=\sqrt{n}|n-1\rangle
$$

Pauli matrices for spin- $\frac{1}{2}$ particle:

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Physics 13AA Spring 2014 Final Exam
Problem 1
A. $|x\rangle$ is a linear combination of $|\uparrow \downarrow\rangle$ and $|\downarrow \uparrow\rangle$.

The probability that the measmement would yield $\hat{1 z} / 2$ for $\hat{S}_{1 z}$ is the probability that the particle is in $1 \uparrow \downarrow>$ state, which is $\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{1}{2}$.
B.
(probability of
being in state $|\uparrow \downarrow\rangle) \times\left(\begin{array}{cl}\text { probability } & \text { that }|\uparrow\rangle_{1} \\ \text { is in }\left|\hat{S}_{x}=\hbar / 2\right\rangle_{1} \text { state }\end{array}\right)=\frac{1}{4}$

$$
\Sigma=1 / 2
$$

C. The wowefunction collapses to $|\downarrow \uparrow\rangle$ state. Then $S_{i z}$ measmement will always yield $-\hbar / 2$ and $S_{1} x$ will yield $\pm \hbar / 2$ with $1 / 2$ probability each.

Problem 2
A.

Old basis

$$
\begin{array}{lll}
|3 / 23 / 2\rangle & \left.|1| \frac{1}{2} \frac{1}{2}\right\rangle \\
|3 / 2| 1 / 2\rangle & \left|11 \frac{1}{2}-\frac{1}{2}\right\rangle, & \left.110 \frac{1}{2} \frac{1}{2}\right\rangle \\
|3 / 2-1 / 2\rangle & \left|10 \frac{1}{2} \frac{-1}{2}\right\rangle, & \left.11-1 \frac{1}{2}\right\rangle \\
|3 / 2-3 / 2\rangle & \left|1-1 \frac{1}{2}\right\rangle & \left.\frac{-1}{2}\right\rangle \\
\left|\frac{1}{2} \frac{1}{2}\right\rangle & \left.\left.110 \frac{1}{2}\right\rangle \frac{1}{2}\right\rangle, & 11\left|\frac{1}{2} \frac{-1}{2}\right\rangle \\
\left.\left|\frac{1}{2}\right\rangle-\frac{1}{2}\right\rangle & \left.110 \frac{1}{2}-\frac{1}{2}\right\rangle & \left.|1-| \frac{1}{2} \frac{1}{2}\right\rangle
\end{array}
$$

The states in the ven basis one linear combinations of the states in the old basis that satisfy $m_{j}=m_{e}+m_{s}$.
B.

$$
\begin{aligned}
& S_{-}\left|\frac{3}{2} \frac{3}{2}\right\rangle=\sqrt{\frac{3}{2} \cdot \frac{5}{2}-\frac{3}{2} \cdot \frac{1}{2}}\left|\frac{3}{2} \frac{1}{2}\right\rangle \\
& \left.\left.\left(S_{1}+S_{2-}\right)|1| \frac{1}{2} \frac{1}{2}\right\rangle=\sqrt{1 \cdot 2-1 \cdot 0}\left|10 \frac{1}{2} \frac{1}{2}\right\rangle+\sqrt{\frac{1}{2} \cdot \frac{3}{2}+\frac{1}{2} \cdot \frac{1}{2}}|1| \frac{1}{2} \frac{-1}{2}\right\rangle \\
& =\sqrt{2}\left|10 \frac{1}{2} \frac{1}{2}\right\rangle+1\left|1 \frac{1}{2} \frac{-1}{2}\right\rangle
\end{aligned}
$$

Thus $\left.\left.\left|\frac{3}{2} \frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}} 110 \frac{1}{2} \frac{1}{2}\right\rangle+\frac{1}{\sqrt{3}}|1| \frac{1}{2} \frac{-1}{2}\right\rangle$
Similonly, $\left|\frac{3}{2}-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}\left|1-1 \frac{1}{2} \frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}\left|10 \frac{1}{2} \frac{-1}{2}\right\rangle$ by repeating above procedure. and $\left|\frac{3}{2}-\frac{3}{2}\right\rangle=\left|1-1 \frac{1}{2} \frac{-1}{2}\right\rangle$.

Now $\left|\frac{1}{2} \frac{1}{2}\right\rangle$ has to be orthogonal to $\left|\frac{3}{2} \frac{1}{2}\right\rangle$, so we can choose

$$
\left.\left|\frac{1}{2} \frac{1}{2}\right\rangle=\frac{-1}{\sqrt{3}}\left|10 \frac{1}{2} \frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}|1| \frac{1}{2}-\frac{1}{2}\right\rangle
$$

Agar, using $S_{-}=S_{1}+S_{2-}$, we obtain $\left|\frac{1}{2}-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}\left|10 \frac{1}{2}-\frac{1}{2}\right\rangle+-\sqrt{\frac{2}{3}}\left|1-1 \frac{1}{2} \frac{1}{2}\right\rangle$

PROBCEM 2
C.

$$
\begin{aligned}
& \left.\left|\frac{1}{2} \frac{1}{2}\right\rangle=\frac{-1}{\sqrt{3}}\left|10 \frac{1}{2} \frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}} \| 1 \frac{1}{2} \frac{-1}{2}\right\rangle \\
& \left\langle\hat{L}_{z}\right\rangle=\left(\frac{1}{3}\right)(0)+\left(\frac{2}{3}\right)(\hbar)=\frac{2}{3} \hbar \\
& \left\langle\hat{S}_{z}\right\rangle=\left(\frac{1}{3}\right)\left(\frac{\hbar}{2}\right)+\left(\frac{2}{3}\right)\left(-\frac{\hbar}{2}\right)=-\frac{\hbar}{6}
\end{aligned}
$$

Problem 3
A. Electron is spin-1/2 fermion, so only two electrons cam occupy each energy level. 1-D Harmonic Oscillator spectrum: $E_{n}=\operatorname{taw}\left(n+\frac{1}{2}\right)$ where $n=0,1,2, \ldots$ Let n_{F} denote the state corresponding to Fermi ane ry Then $n_{F}=N / 2, E_{F}=\hbar \omega\left(\frac{N}{2}+\frac{1}{2}\right) \simeq \frac{\hbar \omega N}{2}$

Ground state energy: $2 z_{0}+2 E_{1}+2 E_{2}+\cdots+2 z_{F}$

$$
=2\left(\hbar_{W}\right)\left[\frac{1}{2}+\frac{3}{2}+\cdots+\left(n_{F}+\frac{1}{2}\right)\right]=\hbar_{W}\left(n_{F}+1\right)^{2} \approx \hbar_{W} \cdot\left(\frac{N}{2}\right)^{2}
$$

B. The volume in n-spare: $\frac{1}{6} n_{F}^{3}$ Electrons per int volume: 2

Thus, $D_{F}=(3 N)^{1 / 3}, E_{F}=\hbar \omega(3 N)^{1 / 3}$

$$
\begin{aligned}
& d V=\left(\frac{\sqrt{3}}{2} n^{2}\right)\left(\frac{d n}{\sqrt{3}}\right)=\frac{1}{2} n^{2} d n \\
& d E=2\left(E_{n}\right) d V=\hbar w\left(n+\frac{3}{2}\right) n^{2} d n \\
& E_{\text {total }}=\int_{0}^{n_{F}} \hbar w n^{3} d n=\hbar \omega n^{3} d n
\end{aligned}
$$

4.

$$
\begin{gathered}
\text { A) } \frac{d}{d t}\langle\psi| \hat{x} \hat{p}|\psi\rangle=\frac{i}{\hbar}\langle[\hat{H}, \hat{x} \hat{p}]\rangle \quad \hat{H}=\hat{T}+\hat{V} \\
\left.=\frac{i}{\hbar}\langle[\hat{H}, \hat{x}] \hat{p}\rangle+\langle\hat{x}[\hat{H}, \hat{p}]\rangle\right)=\frac{i}{\hbar}\langle[\hat{T}, \hat{x}] \hat{p}\rangle+\frac{i}{\hbar}\langle\hat{x}[\hat{v}, \hat{p}]\rangle \\
{[\hat{T}, \hat{x}]=\frac{1}{2 m}(\hat{p}[\hat{p}, \hat{x}]+[\hat{p}, \hat{x}] \hat{p})=\frac{-i \hbar \hat{p}}{m}} \\
\frac{i}{\hbar}\langle[\hat{T}, \hat{x}] \hat{p}\rangle=\frac{1}{m}\left\langle\hat{p}^{2}\right\rangle=2\langle\hat{T}\rangle \\
\frac{i}{\hbar}\langle\hat{x}[\hat{v}, \hat{p}]\rangle=\int \psi^{*} \times\left(V \frac{d \psi}{d x}-\frac{d}{d x}(v \psi)\right) d x=-\int \psi^{*} x \frac{d v}{d x} \psi d x=-\left\langle x \frac{d v}{d x}\right\rangle
\end{gathered}
$$

For stationary states,

$$
\begin{aligned}
& r \text { stationary states, } \\
& \frac{d}{d t}\langle\hat{x} \hat{p}\rangle=0
\end{aligned}
$$

B)

$$
2\left\langle T_{x}\right\rangle \stackrel{\frac{P_{x}^{2}}{2 m}}{=}\left\langle x \frac{d v}{d x}\right\rangle \quad 2\left\langle T_{y}\right\rangle=\left\langle y \frac{d v}{d y}\right\rangle \quad 2\left\langle T_{z}\right\rangle=\left\langle z \frac{d v}{d z}\right\rangle
$$

Adding these 3 equations yields: $\quad T=\frac{P_{x}^{2}+P_{y}^{2}+P_{z}^{2}}{2 m}=T_{x}+T_{y}+T_{z}$

$$
2\langle T\rangle=\left\langle\left(x \frac{d}{d x}+y \frac{d}{d y}+z \frac{d}{d z}\right) V\right\rangle=\langle\vec{r} \cdot \vec{\nabla} V\rangle
$$

5
A) Given $\begin{aligned} & \hat{a}_{ \pm}=\frac{1}{\sqrt{2 \hbar m \omega}}(m \omega \hat{x} \mp i p) \text { so } \quad \hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}_{+}+\hat{a}_{-}\right) \\ & \hat{p}=i \sqrt{\frac{\sqrt{m \omega}}{2}\left(\hat{a}_{+}-\hat{a}_{-}\right)}\end{aligned}$
$\hat{a}_{+}|n\rangle=(n+1)|n+1\rangle \quad\langle m \mid n\rangle=\delta_{m n}$
$\hat{a}-|n\rangle=n|n-1\rangle \quad\langle x\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\langle n| \hat{a}_{+}+\hat{a}_{-}|n\rangle=0$

$$
\left\langle\hat{x}^{2}\right\rangle=\frac{\hbar}{2 m \omega}\langle n| a_{+} a_{-}+a_{-} a_{+}|n\rangle=\frac{\hbar}{2 m w}(2 n+1)
$$

B) $\langle\hat{p}\rangle=i \sqrt{\frac{\hbar m \omega}{2}}\langle n| \hat{a}_{+}-\hat{a}_{-}|n\rangle=0$

$$
\left\langle\hat{p}^{2}\right\rangle=-\frac{\hbar m \omega}{2}\langle n| \hat{\alpha}_{+}^{270}-\hat{a}_{-} \hat{a}_{+}-\hat{a}_{+} \hat{a}_{-}-\hat{\alpha}_{-}^{2}|n\rangle=\frac{\hbar m \omega}{2}(2 n+1)
$$

C) $\begin{aligned} & \sigma_{x}=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{\frac{\hbar(2 n+1)}{2 m \omega}} \\ & \sigma_{p}=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}=\sqrt{\frac{\hbar(2 n+1)}{2} m \omega} \quad \sigma_{x} \cdot \sigma_{p}=\hbar\left(n+\frac{1}{2}\right) \geq \frac{\hbar}{2}, ~\end{aligned}$
D) $\langle T\rangle=\frac{\left\langle p^{2}\right\rangle}{2 m}=\frac{\hbar \omega}{2}\left(n+\frac{1}{2}\right) \quad\langle V\rangle=\frac{m \omega^{2}}{2}\left\langle x^{2}\right\rangle=\frac{\hbar \omega}{2}\left(n+\frac{1}{2}\right)$

$$
\left\langle x \frac{d v}{d x}\right\rangle=\left\langle x \frac{m w^{2}}{2} 2 x\right\rangle=2\langle V\rangle=2\langle T\rangle
$$

6. $\quad S_{x}=\frac{\hbar}{2}\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \quad S_{y}=\frac{\hbar}{2}\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0\end{array}\right) \quad S_{z}=\frac{\hbar}{2}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right)$
A) $S_{i}|i\rangle=0 \quad|x\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right) \quad|y\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \quad|z\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

$$
\langle i \mid j\rangle=\delta_{i j} \quad i, j=x, y, z
$$

B) $\hat{Q}=a|x\rangle\langle x|+b|y\rangle\langle y|+c|z\rangle\langle z|$

By construction of \hat{Q},

$$
\hat{Q}|x\rangle=a|x\rangle \quad \hat{Q}|y\rangle=b|y\rangle \quad \hat{Q}|z\rangle=c|z\rangle
$$ eigenvalue eigenvector

C) $\hat{Q}=\frac{a}{2}\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1\end{array}\right)+\frac{b}{2}\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)+\frac{c}{2}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}a+b & 0 & -a+b \\ 0 & c & 0 \\ -a+b & 0 & a+b\end{array}\right)$ $\langle 1| \hat{Q}|-1\rangle=\frac{-a+b}{2} \quad$ but $\langle 1| \vec{B} \cdot \vec{S}|-1\rangle=\sum_{i=x}^{z} B_{i}\langle 1| s_{i}|-1\rangle^{0}=0$
$\hat{Q}=\vec{B} \cdot \vec{S}$ only if $\frac{-a+b}{2}=0$ but $a \neq b$ stated in (B).
D) To separate $|x\rangle,|y\rangle,|z\rangle$ states in a \vec{B} field, we need to make these 3 states eigenstates of energy with 3 distinct eigenvalues, whose operator takes the general form of \hat{Q}.
However, in a Stern-Gerlach experiment, $\hat{H} \propto \vec{B} \cdot \vec{S}$ and $\vec{B} \cdot \vec{S} \neq \hat{Q}$ for any \vec{B}.
Thus, $|x\rangle,|y\rangle,|z\rangle$ states can never be the eigenstates of energy in a Stern-Gerlach experiment.

