Physics 137A

Lecture $1 \diamond$ Spring 2014
University of California at Berkeley
\section*{Final Exam}

May 12, 2014, 7-10pm, 4 LeConte
6 problems $\diamond 180$ minutes $\diamond 100$ points

Problem $1 \diamond$ THREE-DIMENSIONAL VECTOR SPACE

10points
Consider a three-dimensional vector space spanned by an orthonormal basis $\{|1\rangle,|2\rangle,|3\rangle\}$. Kets $|\alpha\rangle$ and $|\beta\rangle$ are given by:

$$
|\alpha\rangle=i|1\rangle-5|2\rangle-i|3\rangle, \quad|\beta\rangle=i|1\rangle+3|3\rangle .
$$

$\diamond \mathrm{A} \diamond$ Construct bras $\langle\alpha|$ and $\langle\beta|$ in terms of the dual basis vectors $\{\langle 1|,\langle 2|,\langle 3|\}$.
$\diamond \mathrm{B} \diamond$ Find $\langle\alpha \mid \beta\rangle$ and $\langle\beta \mid \alpha\rangle$.
$\diamond \mathrm{C} \diamond$ Find all matrix elements of the operator $\hat{A}=|\beta\rangle\langle\alpha|$, in this basis, and write this operator as a matrix. Is it Hermitian?

Problem $2 \diamond$ Four particles in a square well

20points
Consider a set of four noninteracting identical particles of mass m confined in a one-dimensional infinitely high square well of length L.
$\diamond \mathrm{A} \diamond$ What are the single particle energy levels? What are the corresponding single particle wave functions? Name the wave functions $\phi_{1}(x), \phi_{2}(x)$, and so on with the corresponding energies $\epsilon_{1}, \epsilon_{2}$, etc.
$\diamond \mathrm{B} \diamond$ Suppose the particles are spinless bosons. What is the energy and (properly normalized) wave function of the grounds state? Of the first excited state? Of the second excited state? Express these three states $\psi_{n}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and corresponding energies E_{n} in terms of your answers from part A: ϕ_{i} 's and ϵ_{i} 's.
$\diamond \mathrm{C} \diamond$ If the particles are spin- $\frac{1}{2}$ fermions what is the energy and (properly normalized) wave function of the ground state? The first excited state? The second excited state? Express your answer in terms of single particle wavefunctions and energies from part A. Feel free to introduce convenient notation for single particle spin states and write your answer using a Slater determinant. Note degeneracy of these levels, if any.

Problem $3 \diamond$ TRIPLE SPIKE

30points
Consider the scattering of a particle of mass m with energy $E \gg \frac{m \alpha}{2 \hbar^{2}}$ from a one-dimensional δ-function potentials.
$\diamond \mathrm{A} \diamond$ Find the reflection coefficient from a single δ-function spike at the origin: $V(x)=\alpha \delta(x)$, with $\alpha>0$. What does the condition $E \gg \frac{m \alpha}{2 \hbar^{2}}$ imply?
$\diamond \mathrm{B} \diamond$ Now two more δ-functions are added to the potential, one to the left and one to the right of the origin:

$$
V(x)=\alpha[\delta(x+a)+\delta(x)+\delta(x-b)], \text { with } \alpha>0 .
$$

Find the the relative positions of the potential spikes (a and b) that maximize the reflection coefficient from this triple spike potential.
$\diamond \mathrm{C} \diamond$ How does the reflection coefficient in the arrangement of part B compare to the reflection coefficient from a single δ-function potential?

Problem $4 \diamond$ ORBITAL ANGULAR MOMENTUM TWO
15points
A quantum particle is known to be in an orbital with $l=2$. You can use the eigenstates of L_{z}, the z-component of orbital angular momentum, as a basis of this $l=2$ subspace and denote them $\left|2 m_{l}\right\rangle$.
$\diamond \mathrm{A} \diamond$ What are allowed values of m_{l} ?
$\diamond \mathrm{B} \diamond$ Find matrix representation of the operators $\hat{L}^{2}, \hat{L}_{z}, \hat{L}_{+}, \hat{L}_{-}, \hat{L}_{x}$, and \hat{L}_{y} in this basis.
$\diamond \mathrm{C} \diamond$ Verify explicitly that $\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}$ in the $l=2$ subspace.

Problem $5 \diamond$ ADDITION OF ANGULAR MOMENTUM

An electron in a hydrogen atom is in an orbital with $l=2$.
$\diamond \mathrm{A} \diamond$ What are the possible values of the total angular momentum quantum number j ?
$\diamond \mathrm{B} \diamond$ If the electron is in a state with the lowest j (among those which you found in part A), what are the possible results of a measurement of \hat{J}_{z}, the z-component of the total angular momentum?
$\diamond \mathrm{C} \diamond$ Suppose that your measurement of \hat{J}_{z} in part B resulted in $m_{j}=j$. If you now measure \hat{L}_{z}, the z-component of the orbital part of angular momentum, what are the possible outcomes?

Problem $6 \diamond$ NONCOMMUTING OPERATORS

10points
$\diamond \mathrm{A} \diamond$ Prove that two noncommuting operators cannot have a complete set of common eigenfunctions.
$\diamond \mathrm{B} \diamond$ Derive the upper limit of the the expectation value of a commutator of two operators, i.e. derive the the generalized uncertainty principle.

You may need to use the Cauchy-Schwarz inequality:

$$
\langle f \mid f\rangle\langle g \mid g\rangle \geq|\langle f \mid g\rangle|^{2}
$$

which holds for any $|f\rangle$ and $|g\rangle$ in a inner product space.

Mathematical Formulas

Trigonometry:

$$
\begin{aligned}
& \sin (a \pm b)=\sin a \cos b \pm \cos a \sin b \\
& \cos (a \pm b)=\cos a \cos b \mp \sin a \sin b
\end{aligned}
$$

Law of cosines:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

Gradient operator:

$$
\vec{\nabla}=\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}=\frac{\partial}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \hat{\phi}
$$

Laplace operator:

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{\partial^{2}}{\partial \phi^{2}}\right)
$$

Integrals:

$$
\begin{aligned}
& \int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x) \\
& \int x \cos (a x) d x=\frac{1}{a^{2}} \cos (a x)+\frac{x}{a} \sin (a x)
\end{aligned}
$$

Exponential integrals:

$$
\int_{0}^{\infty} x^{n} e^{-x / a} d x=n!a^{n+1}
$$

Gaussian integrals:

$$
\begin{gathered}
\int_{0}^{\infty} x^{2 n} e^{-x^{2} / a^{2}} d x=\sqrt{\pi} \frac{(2 n)!}{n!}\left(\frac{a}{2}\right)^{2 n+1} \\
\int_{0}^{\infty} x^{2 n+1} e^{-x^{2} / a^{2}} d x=\frac{n!}{2} a^{2 n+2}
\end{gathered}
$$

Integration by parts:

$$
\int_{a}^{b} f \frac{d g}{d x} d x=-\int_{a}^{b} \frac{d f}{d x} g d x+\left.f g\right|_{a} ^{b}
$$

Fundamental Equations

Schrödinger equation:

$$
i \hbar \frac{\partial|\Psi\rangle}{\partial t}=\hat{H}|\Psi\rangle
$$

Time-independent Schrödinger equation:

$$
\hat{H}|\psi\rangle=E|\psi\rangle, \quad|\Psi\rangle=|\psi\rangle e^{-i E t / \hbar}
$$

Hamiltonian operator:

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+V=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V
$$

Position and momentum representations:

$$
\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \exp \left(\frac{i p x}{\hbar}\right), \quad \psi(x)=\langle x \mid \psi\rangle, \quad \phi(p)=\langle p \mid \phi\rangle, \quad\langle x| \hat{p}|\psi\rangle=-i \hbar \frac{d}{d x} \psi(x)
$$

Momentum operator:

$$
\hat{p}_{x}=-i \hbar \frac{\partial}{\partial x}, \quad \hat{p}_{y}=-i \hbar \frac{\partial}{\partial y}, \quad \hat{p}_{z}=-i \hbar \frac{\partial}{\partial z}
$$

Time dependence of an expectation value:

$$
\frac{d\langle\hat{Q}\rangle}{d t}=\frac{i}{\hbar}\langle[\hat{H}, \hat{Q}]\rangle+\left\langle\frac{\partial \hat{Q}}{\partial t}\right\rangle
$$

Generalized uncertainty principle:

$$
\sigma_{A} \sigma_{B} \geq\left|\frac{1}{2 i}\langle[\hat{A}, \hat{B}]\rangle\right|
$$

Canonical commutator:

$$
\left[\hat{x}, \hat{p}_{x}\right]=i \hbar, \quad\left[\hat{y}, \hat{p}_{y}\right]=i \hbar, \quad\left[\hat{z}, \hat{p}_{z}\right]=i \hbar
$$

Angular momentum:

$$
\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}, \quad\left[\hat{L}_{y}, \hat{L}_{z}\right]=i \hbar \hat{L}_{x}, \quad\left[\hat{L}_{z}, \hat{L}_{x}\right]=i \hbar \hat{L}_{y}
$$

Raising and lowering operator for angular momentum:

$$
\hat{L}_{ \pm}=\hat{L}_{x} \pm i \hat{L}_{y}, \quad\left[\hat{L}_{+}, \hat{L}_{-}\right]=2 \hbar \hat{L}_{z}, \quad \hat{L}_{ \pm}|l, m\rangle=\hbar \sqrt{l(l+1)-m(m \pm 1)}|l, m \pm 1\rangle
$$

Raising and lowering operator for harmonic oscillator:

$$
\hat{a}_{ \pm}=\frac{1}{\sqrt{2 \hbar m \omega}}(m \omega \hat{x} \mp i \hat{p}), \quad\left[\hat{a}_{-}, \hat{a}_{+}\right]=1, \quad \hat{a}_{+} \psi_{n}=\sqrt{n+1} \psi_{n+1}, \quad \hat{a}_{-} \psi_{n}=\sqrt{n} \psi_{n-1}
$$

Pauli matrices for spin- $\frac{1}{2}$ particle:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

1.

A) $\quad(a|i\rangle+b|j\rangle+c|k\rangle)^{+}=a^{*}\langle i|+b^{*}\langle j|+c^{*}\langle k|$

$$
\begin{aligned}
& \langle\alpha|=-i<1|-5<2|+i<3 \mid \\
& \langle\beta|=-i<1|+3<3|
\end{aligned}
$$

B)

$$
\begin{aligned}
\langle\alpha \mid \beta\rangle & =(-i)(i)+(-5)(0)+(i)(3) \quad \text { using }\langle i \mid j\rangle=\delta_{i j} \\
& =1+3 i \\
\langle\beta \mid \alpha\rangle & =\langle\alpha \mid \beta\rangle^{*}=1-3 i
\end{aligned}
$$

C)

$$
\begin{aligned}
& \hat{A}=|\beta\rangle\langle\alpha|=(i|1\rangle+3|3\rangle)(-i\langle 1|-5\langle 2|+i\langle 3|) \\
& \hat{A}=|1\rangle\langle 1|-5 i|1\rangle\langle 2|-|1\rangle\langle 3|-3 i|3\rangle\langle 1|-15|3\rangle\langle 2|+3 i|3\rangle\langle 3| \\
& \hat{A}=\left(\begin{array}{ccc}
1 & -5 i & -1 \\
0 & 0 & 0 \\
-3 i & -15 & 3 i
\end{array}\right) \quad \hat{A}^{+}=\left(\hat{A}^{\top}\right)^{*} \neq \hat{A} \text { not Hermitian. }
\end{aligned}
$$

Problem 2
A. $\phi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \quad \Sigma_{n}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m L^{2}}$
B. Ground state:

$$
\psi_{0}\left(x_{1} x_{2} x_{3} x_{4}\right)=\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right) \phi_{1}\left(x_{3}\right) \phi_{1}\left(x_{4}\right) \quad E_{0}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}(4)
$$

${ }^{\text {st }}$ excited state:

$$
\psi_{1}\left(x_{1} x_{2} x_{3} x_{4}\right)=\frac{1}{\sqrt{4}}\left(\begin{array} { l }
{ \phi _ { 1 } (x _ { 1 }) \phi _ { 1 } (x _ { 2 }) \phi _ { 1 } (x _ { 3 }) \phi _ { 2 } (x _ { 4 }) } \\
{ + \phi _ { 1 } (x _ { 1 }) \phi _ { 1 } (x _ { 2 }) } \\
{ \phi _ { 2 } (x _ { 3 }) } \\
{ \phi _ { 1 } (x _ { 4 }) } \\
{ + \phi _ { 1 } (x _ { 1 }) } \\
{ \phi _ { 2 } (x _ { 2 }) } \\
{ + \phi _ { 1 } (x _ { 3 }) \phi _ { 1 } (x _ { 4 }) } \\
{ + \phi _ { 2 } (x _ { 1 }) }
\end{array} \phi _ { 1 } (x _ { 2 }) \phi _ { 1 } (x _ { 3 }) \phi _ { 1 } (x _ { 4 }) ~ \left\{~ \quad E_{1}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}(7)\right.\right.
$$

$2^{\text {nd }}$ excited state:

$$
\psi_{2}\left(x_{1} x_{2} x_{3} x_{4}\right)=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right) \phi_{2}\left(x_{3}\right) \phi_{2}\left(x_{4}\right) \\
+\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{2}\left(x_{3}\right) \phi_{1}\left(x_{4}\right) \\
+\phi_{2}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{1}\left(x_{3}\right) \phi_{1}\left(x_{4}\right) \\
+\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{1}\left(x_{3}\right) \phi_{2}\left(x_{4}\right) \\
+\phi_{2}\left(x_{1}\right) \phi_{1}\left(x_{2}\right) \phi_{2}\left(x_{3}\right) \phi_{1}\left(x_{4}\right) \\
+\phi_{2}\left(x_{1}\right) \phi_{1}\left(x_{2}\right) \phi_{1}\left(x_{3}\right) \phi_{2}\left(x_{4}\right)
\end{array}\right) \quad E_{2}=\frac{t_{2}^{2} \pi^{2}}{2 m L^{2}}(10)
$$

C.

Ground State

$$
\begin{aligned}
& \Psi_{0}\left(x_{1} x_{2} x_{3} x_{4}\right)=\frac{1}{\sqrt{4!}!}\left|\begin{array}{llll}
\phi_{1}\left(x_{1}\right)|\uparrow\rangle & \phi_{1}\left(x_{1}\right)|\downarrow\rangle & \phi_{2}\left(x_{1}\right)|\uparrow\rangle & \phi_{2}\left(x_{1}\right)|\downarrow\rangle \\
\left.\phi_{1}\left(x_{2}\right) 1 \uparrow\right\rangle & \left.\phi_{1}\left(x_{2}\right) \downarrow\right\rangle & \phi_{2}\left(x_{2}\right)|\uparrow\rangle & \phi_{2}\left(x_{2}\right)|\downarrow\rangle \\
\phi_{1}\left(x_{3}\right)|\uparrow\rangle & \left.\phi_{2}\left(x_{3}\right) \downarrow\right\rangle & \left.\phi_{2}\left(x_{3}\right) 1 \uparrow\right\rangle & \phi_{2}\left(x_{3}\right)|\downarrow\rangle \\
\left.\phi_{1}\left(x_{4}\right) 1 \uparrow\right\rangle & \phi_{1}\left(x_{4}\right)|\downarrow\rangle & \phi_{2}\left(x_{4}\right)|\uparrow\rangle & \phi_{2}\left(x_{4}\right)|\downarrow\rangle
\end{array}\right| \\
& E_{0}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}(10)
\end{aligned}
$$

lIst excited state

$$
24_{1}\left(x_{1} x_{2} x_{3} x_{4}\right)=\left|\begin{array}{llll}
\phi_{1}\left(x_{1}\right)|\uparrow\rangle & \phi_{1}\left(x_{1}\right)|\downarrow\rangle & \phi_{2}\left(x_{1}\right)\left|x_{1}\right\rangle & \phi_{3}\left(x_{1}\right)\left|x_{2}\right\rangle \\
\phi_{1}\left(x_{2}\right)|\uparrow\rangle & \phi_{1}\left(x_{2}\right)|\downarrow\rangle & \phi_{2}\left(x_{2}\right)\left|x_{1}\right\rangle & \phi_{3}\left(x_{2}\right)\left|x_{2}\right\rangle \\
\phi_{1}\left(x_{3}\right)|\uparrow\rangle & \phi_{1}\left(x_{3}\right)|\downarrow\rangle & \phi_{2}\left(x_{3}\right)\left|x_{1}\right\rangle & \phi_{3}\left(x_{3}\right)\left|x_{2}\right\rangle \\
\phi_{1}\left(x_{4}\right)|\uparrow\rangle & \phi_{1}\left(x_{4}\right)|\downarrow\rangle & \phi_{2}\left(x_{4}\right)\left|x_{1}\right\rangle & \phi_{3}\left(x_{4}\right)\left|x_{2}\right\rangle
\end{array}\right|
$$

$E_{1}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} \times(15) \quad$ There is degeneracy because $\left|x_{1}\right\rangle$ and $\left|x_{2}\right\rangle$ $2^{\text {nd }}$ excited state can be any arbitron linear combination of spin up \& down states.

$$
\psi_{2}\left(x_{1} x_{2} x_{3} x_{4}\right)=\left|\begin{array}{cccc}
1 / \text { sqrt(4) }) & \left(\phi_{2}\left(x_{1}\right)|\uparrow\rangle\right. & \phi_{2}\left(x_{1}\right)|\downarrow\rangle & \phi_{3}\left(x_{1}\right)|x\rangle \\
\phi_{1}\left(x_{1}\right)|\uparrow\rangle & \phi_{1}\left(x_{2}\right)|\uparrow\rangle & \vdots & \vdots \\
\phi_{1}\left(x_{3}\right)|\uparrow\rangle & \vdots & \vdots \\
\phi_{1}\left(x_{4}\right)|\uparrow\rangle & &
\end{array}\right|
$$

$$
E_{2}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}(1+4+4+9)=\frac{t^{2} \pi^{2}}{2 m L^{2}}(18)
$$

Bearvse $|x\rangle$ cam be any spin state, this is also degenerate.

3
A) $R=\frac{1}{1+\frac{2 \hbar^{2} E}{m \alpha^{2}}} \quad$ Refer to Griffith for derivation of Eqn. 2.141

$$
\left.E \gg \frac{m \alpha^{2}}{2 \hbar^{2}} \quad \frac{2 \hbar^{2} E}{m \alpha^{2}} \gg \right\rvert\, \Rightarrow R \ll 1 .
$$

B) Actual wave reflection coefficient includes secondary and further reflations as illustrated below.

However, $R \ll 1$, these further refletions can be ignored.
Then the net reflected wave can be obtained by the interference of three reflected waves.

Let $\psi_{\text {in }}=A e^{i(k x-\omega t)}$ and $\psi_{r e}=B e^{i(-k x-\omega t)}$ for one single well.

$$
\left.\psi_{R E}=B e^{i(-k x-\omega t)}+B e^{i(-k x-\omega t-k 2 a)}+B e^{\frac{k}{\text { phase }}} \underset{\text { phase }}{i(-k x-\omega t-k 2(a+b))} d \vec{a}\right)
$$

Please note the addition phases of $2^{\text {nd }} \& 3^{\text {rd }}$ reflected waves are from the additional distances travelled. $\psi_{R E}=\psi_{r e}\left(1+e^{-i 2 K a}+e^{-i 2 k(a+b)}\right)$

$$
R_{\text {new }}=\left|\frac{\psi_{\text {RE }}}{\psi_{\text {in }}}\right|^{2}=R_{\text {old }}\left|1+e^{-i 2 k a}+e^{-i 2 k(a+b)}\right|^{2}
$$

This is maximized when $2 k a=2 \pi n \quad 2 k(a+b)=2 \pi m \quad n, m \in \mathbb{Z}\binom{$ consTructive }{ interference }

$$
a=\frac{n \pi}{k} \quad b=\frac{n \pi}{k}-\frac{n \pi}{k}=(m-n) \frac{\pi}{k}=\frac{q \pi}{k} \quad q \in \mathbb{Z} .
$$

C) When $a=\frac{n \pi}{K} \quad b=\frac{q \pi}{K}, \quad R_{\text {new }}=R_{\text {old }}|3|^{3}=9 R_{\text {old }}$.

Problem 4
A. $m_{e}=-2,-1,0,+1,+2$
B.

$$
\begin{aligned}
& L^{2}=6 \hbar\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad L_{z}=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -2
\end{array}\right] \\
& L_{+}=\hbar\left[\begin{array}{lllll}
0 & 2 & 0 & 0 & 0 \\
0 & 0 & \sqrt{6} & 0 & 0 \\
0 & 0 & 0 & \sqrt{6} & 0 \\
0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad L_{-}=\hbar\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 \\
0 & \sqrt{6} & 0 & 0 & 0 \\
0 & 0 & \sqrt{6} & 0 & 0 \\
0 & 0 & 0 & 2 & 0
\end{array}\right] \\
& L_{x}=\frac{1}{2}\left(L_{+}+L_{-}\right)=\frac{\hbar}{2}\left[\begin{array}{ccccc}
0 & 2 & 0 & 0 & 0 \\
2 & 0 & \sqrt{6} & 0 & 0 \\
0 & \sqrt{6} & 0 & \sqrt{6} & 0 \\
0 & 0 & \sqrt{6} & 0 & 2 \\
0 & 0 & 0 & 2 & 0
\end{array}\right] \quad L_{y}=\frac{1}{2 i}\left(L_{+}-L_{-}\right)=\frac{\hbar}{2 i}\left[\begin{array}{ccccc}
0 & 2 & 0 & 0 & 0 \\
-2 & 0 & \sqrt{6} & 0 & 0 \\
0 & -\sqrt{6} & 0 & \sqrt{6} & 0 \\
0 & 0 & -\sqrt{6} & 0 & 2 \\
0 & 0 & 0 & -2 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } L_{x} L_{y}-L_{y} L_{x} \\
& =\left(\frac{\hbar^{2}}{4 i}\right)\left[\begin{array}{ccccc}
-4 & 0 & 2 \sqrt{6} & 0 & 0 \\
0 & -2 & 0 & 6 & 0 \\
-2 \sqrt{6} & 0 & 0 & 0 & 2 \sqrt{6} \\
0 & -6 & 0 & 2 & 0 \\
0 & 0 & -2 \sqrt{6} & 0 & 4
\end{array}\right]-\left(\frac{\hbar^{2}}{4 i}\right)\left[\begin{array}{ccccc}
4 & 0 & 2 \sqrt{6} & 0 & 0 \\
0 & 2 & 0 & 6 & 0 \\
-2 \sqrt{6} & 0 & 0 & 0 & 2 \sqrt{6} \\
0 & -6 & 0 & -2 & 0 \\
0 & 0 & -2 \sqrt{6} & 0 & -4
\end{array}\right] \\
& =i \hbar L_{z}
\end{aligned}
$$

Problem 5
A. The total angular momentum can he any value hetween $\left|S_{1}-S_{2}\right| \ldots,\left(S_{1}+s_{c}\right)$ in integer steps.

$$
j=3 / 2 \text { or } 5 / 2
$$

B. If $j=3 / 2$, then m_{j} can take an value between $-j$ and j in integer steps. $m_{j}=+3 / 2,+1 / 2,-1 / 2,-3 / 2$
C. $13 / 23 / 2>$ state is a linear combination of $121>1 / 2,1 / 2>$ state and $12 z>11 / 2-1 / 2\rangle$ state. Thus, measmement of L_{z} would yield either t or $2 t$.
6.
A) We will prove it by its contrapositive statement:

If \hat{P} and \hat{Q} have common eigenfuntions, they have to commute.
Let ψ_{n} be the common eigenfuntions, ie. $\hat{P} \psi_{n}=P_{n} \psi_{n} \quad \hat{Q} \psi_{n}=Q_{n} \psi_{n}$
Any f can be expressed as $f=\sum_{n} c_{n} \psi_{n}$.

$$
[\hat{P}, \hat{Q}] f=\sum_{n} c_{n}(\hat{P} \hat{Q}-\hat{Q} \hat{P}) \psi_{n}=\sum_{n} c_{n}\left(P_{n} Q_{n}-Q_{n} P O\right) \psi_{n}=0
$$

B) Please refer to section 3.5 on p. 110 of Griffith.

