Physics 137A

Spring 2014 University of California at Berkeley

MIDTERM 2

April 14, 2014, 7-9pm, 1 LeConte $120 minutes \diamond 50 points$

<u>Problem 1</u> \diamond Sequential Measurements (Modified Griffiths Problem 3.27) An operator \hat{A} , corresponding to an observable α , has two normalized eigenstates $|\psi_1\rangle$ and $|\psi_2\rangle$, with eigenvalues a_1 and a_2 . An operator \hat{B} , corresponding to another observable β , has two normalized eigenstates $|\phi_1\rangle$ and $|\phi_2\rangle$, with eigenvalues b_1 and b_2 . The eigenstate are related by:

$$|\psi_1\rangle = \frac{3}{5} |\phi_1\rangle + \frac{4}{5} |\phi_2\rangle, \quad |\psi_2\rangle = \frac{4}{5} |\phi_1\rangle - \frac{3}{5} |\phi_2\rangle.$$

 $\diamond A \diamond$ Observable β is measured and value b_1 is obtained. What is the state of the system after this measurement?

 \diamond B \diamond If observable α is subsequently measured, and then β is measured again, what is the probability that the value b_1 is obtained the second time β is measured?

Problem 2 & HARMONIC OSCILLATOR VS HYDROGEN ATOM GROUND STATE

- $\diamond A \diamond$ Show that $\psi_0(r) \propto e^{-ar^2}$ is a solution of the Schrödinger equation for the harmonic oscillator, provided that $a = \frac{m\omega}{2\hbar}$. Find the corresponding ground state energy E_0 . Normalize the wave function.
- $\diamond B \diamond$ Show that $\psi_1(r) \propto e^{-br}$ is a solution of the Schrödinger equation for the hydrogen atom, provided that $b = \frac{mke^2}{\hbar^2} = \frac{1}{a_0}$, where a_0 is the Bohr radius. Find the corresponding ground state energy E_1 . Normalize the wave function.
- $\diamond C \diamond If$ we move along, say, the x-axis, there is a kink (a discontinuity in slope) in the hydrogen atom ground state $\psi_1(r)$ on passing through the origin. Why (physically) is there one here but not for the harmonic oscillator $\psi_0(r)$?

Problem 3 & Hydrogen Atom Ground States

A hydrogen atom is in its ground state just like in *Problem* 2B.

- \diamond A \diamond If space is divided into identical infinitesimal cubes, in which cube is the electron most likely to be found?
- ◊ B ◊ If instead space is divided into shells of infinitesimal thickness, like the layers of an onion, centered on the proton, what is the radius of the shell in which the electron is most likely to be found?
- $\diamond C \diamond C$ calculate the mean radius of hydrogen atom $\langle r \rangle$?
- \diamond D \diamond Calculate the mean value of the potential energy V(r).
- $\diamond \to \diamond$ What is the mean value of the kinetic energy T? (No calculation needed here!)

Problem 4 \diamond Measuring Electron's Spin (Griffiths Problem 4.49) An electron at rest is in the spin state given by the spinor

$$|\chi\rangle = N \left(\begin{array}{c} 1-2i \\ 2 \end{array} \right)$$

in the standard basis of eigenstates of \hat{S}_z with spin up $|\uparrow\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$ and spin down $|\downarrow\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$.

- \diamond A \diamond Determine the constant N by normalizing $|\chi\rangle$.
- \diamond B \diamond If you measured S_z on this electron, what values could you get, and what is the probability of each? What is the expectation value of S_z ?
- $\diamond C \diamond If$ you measured S_x on this electron, what values could you get, and what is the probability of each? What is the expectation value of S_x ?
- \diamond D \diamond If you measured S_y on this electron, what values could you get, and what is the probability of each? What is the expectation value of S_y ?

20points

11 points

7points

12points

MATHEMATICAL FORMULAS

 $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$ $\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$

 $c^2 = a^2 + b^2 - 2ab\cos\theta$

Trigonometry:

Law of cosines:

Integrals:

 $\int x \sin(ax) \, dx = \frac{1}{a^2} \sin(ax) - \frac{x}{a} \cos(ax)$ $\int x \cos(ax) \, dx = \frac{1}{a^2} \cos(ax) + \frac{x}{a} \sin(ax)$

$$\int_0 x^n e^{-x/a} \, dx = n! \, a^{n+1}$$

$$\int_{0}^{\infty} x^{2n} e^{-x^{2}/a^{2}} dx = \sqrt{\pi} \frac{(2n)!}{n!} \left(\frac{a}{2}\right)^{2n+1}$$
$$\int_{0}^{\infty} x^{2n+1} e^{-x^{2}/a^{2}} dx = \frac{n!}{2} a^{2n+2}$$
$$\int_{a}^{b} f \frac{dg}{dx} dx = -\int_{a}^{b} \frac{df}{dx} g dx + fg \Big|_{a}^{b}$$

Integration by parts:

Exponential integrals:

Gaussian integrals:

FUNDAMENTAL EQUATIONS

Schrödinger equation:

Time-independent Schrödinger equation:

$$\hat{H}\psi = E\psi, \quad \Psi = \psi e^{-iEt/\hbar}$$

 $i\hbar\frac{\partial\Psi}{\partial t} = \hat{H}\Psi$

Hamiltonian operator:

$$\hat{H} = \frac{\hat{p}^2}{2m} + V = -\frac{\hbar^2}{2m}\nabla^2 + V = -\frac{\hbar^2}{2m}\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\left(\frac{\partial^2}{\partial\phi^2}\right)\right] + V$$

Momentum operator:

$$\hat{p}_x = -i\hbar\frac{\partial}{\partial x}, \quad \hat{p}_y = -i\hbar\frac{\partial}{\partial y}, \quad \hat{p}_z = -i\hbar\frac{\partial}{\partial z}$$

Time dependence of an expectation value:

$$\frac{d\langle \hat{Q} \rangle}{dt} = \frac{i}{\hbar} \left\langle [\hat{H}, \hat{Q}] \right\rangle + \left\langle \frac{\partial \hat{Q}}{\partial t} \right\rangle$$

Generalized uncertainty principle:

$$\sigma_A \sigma_B \ge \left| \frac{1}{2i} \left\langle [\hat{A}, \hat{B}] \right\rangle \right|$$

Canonical commutator:

$$[\hat{x}, \hat{p}_x] = i\hbar, \quad [\hat{y}, \hat{p}_y] = i\hbar, \quad [\hat{z}, \hat{p}_z] = i\hbar$$

Angular momentum:

$$[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z, \quad [\hat{L}_y, \hat{L}_z] = i\hbar \hat{L}_x, \quad [\hat{L}_z, \hat{L}_x] = i\hbar \hat{L}_y$$

Pauli matrices:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

1.
A) After the measurement, the wave function collaspes into
the eigenstate of the measured value. Hence,
$$|\phi_1\rangle$$
. H
B) Solving for $|\phi_1\rangle$, it gives $|\phi_1\rangle = \frac{3}{5} |\psi_1\rangle + \frac{4}{5} |\psi_2\rangle$
Measuring $\alpha < a_1 \quad P_1 = \frac{q}{25} \rightarrow |\psi_1\rangle \xrightarrow{\text{to get } b_1} P_1' = \frac{q}{25}$
 $P_{\text{tot}} = (\frac{q}{25})^2 + (\frac{16}{25})^2 = \frac{337}{625}$

2. A)
$$\Psi_{0} = Ae^{-ar^{2}}$$
 $H\Psi = \frac{h^{3}}{2m}\nabla^{2}\Psi + \frac{1}{2}mw^{3}r^{2}\Psi = E\Psi$
 $\nabla^{2} = \frac{1}{r^{2}}\frac{h}{\delta r}\left(r^{2}\frac{h}{\delta r}\right) + \cdots$ (angular derivatives)
 $H\Psi = -\frac{h^{2}}{2m}\left(r^{2}\frac{h}{\delta r}\right) + \frac{1}{2}mw^{2}r^{2}A e^{-2ar^{2}}$
 $-\frac{h}{2m}\left(-6aAe^{-ar^{2}} + 4a^{2}r^{2}Ae^{-ar^{2}}\right) + \frac{1}{2}mw^{2}r^{2}A e^{-ar^{2}} \propto \Psi$
since $-\frac{h^{3}}{2m}4a^{2}r^{2} = \frac{1}{2}mw^{2}r^{2}$ so Ψ solves $H\Psi = E\Psi_{d}$
 $-\frac{h^{2}}{2m}\left(-6aAe^{-ar^{2}}\right) = EAe^{-ar^{2}}$ $E = \frac{3h^{2}}{2m}a = \left[\frac{3}{2}hw\right]$ as expected.
 $\frac{1}{2m}\prod_{n=0}^{\infty}A^{2}e^{-2ar^{2}}r^{2}sin\theta drd\theta d\phi = A^{2}\cdot 4\Pi\cdot i\Pi \frac{1}{2!}\left(\frac{1}{242a}\right)^{3} = 1$ $A = \left(\frac{2a}{\pi}\right)^{3}4$
 $\Psi_{0} = \left(\frac{2a}{\pi}\right)^{3}4e^{-ar^{2}}$
 $W_{0} = \left(\frac{2a}{\pi}\right)^{3}4e^{-ar^{2}}$
 $H\Psi = -\frac{h^{2}}{2m}\frac{1}{r^{2}}\frac{h}{\delta r}\left(-br^{2}Ae^{-br}\right) + \frac{-ke^{2}}{r}\Psi = E\Psi$
 $\nabla^{2} = \frac{1}{r^{2}}\frac{h}{\delta r}\left(r^{2}\frac{h}{\delta r}\right) + \cdots$ (angular derivatives)
 $H\Psi = -\frac{h^{2}}{2m}\frac{1}{r^{2}}\frac{h}{\delta r}\left(-br^{2}Ae^{-br}\right) + \frac{-ke^{2}}{r}Ae^{-br} \propto \Psi$
 $since $-\frac{h^{2}}{2m}(e^{-2br} - 2b\frac{1}{r}Ae^{-br}) + \frac{-ke^{2}}{r}Ae^{-br} \propto \Psi$
 $since $-\frac{h^{2}}{2m}(e^{-2br}) = \frac{ke^{2}}{r}$ so Ψ_{0} solves $H\Psi = E\Psi_{d}$
 $\int_{0}^{2}\int_{0}^{2}\int_{0}^{2}A^{2}e^{-2br}r^{2}sin\theta drd\theta d\phi = A^{2}\cdot 4\Pi\cdot 2!\left(\frac{1}{2b}\right)^{3} = 1$ $A = \left(\frac{b^{3}}{\pi}\right)^{4}e^{-br}$
 $\int_{0}^{2}\int_{0}^{2}\int_{0}^{2}Ae^{-br} + a^{2}he^{-br} + \frac{1}{r}e^{-br} + \frac{1}{r}e^{-b$$$

Probability the pudicle is in the infinite random of the origin where
$$r=0$$
.
Probability the pudicle is in the infinite random of the origin where $r=0$.
B. Probability the pudicle is in the spherical chell: $|2l_1(r)|^2 4\pi r^2 dr$
 $= \frac{1}{\pi a^3} e^{2r/a} dxdy dz$. This is maximum at the origin where $r=0$.
B. Probability the pudicle is in the spherical chell: $|2l_1(r)|^2 4\pi r^2 dr$
 $= \frac{4}{q^3} r^2 e^{2r/a} dr = P(r) dr$ where $P(r) = \frac{4}{q^3} r^2 e^{2r/a}$
max when $\frac{dP}{dr} = 0$. $\frac{dP}{dr} = \frac{4}{q^3} [2r e^{2r/a} - 2b r^2 e^{2br}] => 0$ when $r=0$.
C. $\langle r \rangle = \int_{0}^{\infty} |2l_1|^2 \cdot r \cdot 4\pi r^2 dr = \frac{4}{q^3} \int_{0}^{\infty} r^2 e^{2br} dr = \frac{4}{q^3} \cdot \frac{3!}{2} \cdot \left(\frac{q}{2}\right)^4$
 $= \frac{2}{q} \frac{q}{q} 0$.
D. $\langle V(r) \rangle = \int_{0}^{\infty} 2l_1^* V(r) 2l_1 + 4\pi r^2 dr = \int_{0}^{\infty} \left(\frac{1}{\pi 0^3} e^{2r/a}\right) \left(\frac{-ke^2}{r}\right) 4\pi r^2 dr$

E. Ehronfests Thm:
$$kE+PE=E+oral$$

 $\langle \sqrt{2}+\sqrt{7}\rangle = E_o \rightarrow \langle T\rangle = E_o - \langle \sqrt{2}\rangle = -\frac{1}{2} \cdot \frac{ke^z}{a_o} + \frac{ke^z}{a_o} = \frac{1}{2} \cdot \frac{ke^z}{a_o}$
 $\left(o_F - 13.6eV + \frac{ke^z}{a_o}\right)$
 $=+13.6eV$

PROBLEM 4

 $|\chi\rangle = N\begin{pmatrix} |-2i\rangle \\ 2 \end{pmatrix}, \langle \chi|\chi\rangle = N^{2}(1+2i)\begin{pmatrix} |-2i\rangle \\ 2 \end{pmatrix} = 9N^{2}$ Α. $N = \frac{1}{3} \left(\langle \chi | \chi \rangle = 1 \right)$ B. $|Z+\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $|Z-\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $|Z\rangle = \begin{pmatrix} \frac{1-2i}{3} \\ \frac{1}{2}+\rangle + \begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \end{pmatrix} |Z-\rangle$ Prob of measuring $\pm \frac{1}{2}$: $\left|\frac{1-2i}{3}\right|^2 = \frac{5}{9}$ Expectation value: $\left(\frac{4}{5}\right)\left(\frac{5}{5}\right) + \left(-\frac{1}{5}\right)\left(\frac{4}{9}\right)$ prob of measuring $-\frac{1}{12}: \left|\frac{2}{3}\right|^2 = \frac{4}{9} = \frac{1}{18}$ C. Finding eigenspinors for $T_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ eigenvalue 1: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q' \\ B \end{pmatrix} = \begin{pmatrix} q \\ B \end{pmatrix} \rightarrow q' = B \qquad |\chi+\rangle = \frac{1}{NZ} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ eigenvalue -1: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q \\ g \end{pmatrix} = - \begin{pmatrix} q \\ B \end{pmatrix} \longrightarrow q = -\beta \quad 1 \times -7 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ Prob of measuring t_1/z : $|\langle x + 12 \rangle|^2 = \left(\frac{1}{\sqrt{2}}(1-1)\frac{1}{3}(\frac{1-2i}{2})\right)^2 = \frac{13}{18}$ Prob of measury $-\frac{1}{12}$: $|\langle x - |x \rangle|^2 = \left|\frac{1}{N^2}(1-1)\frac{1}{3}(\frac{1-2i}{2})\right|^2 = \frac{5}{18}$ $\angle S_{x} \ge \left(\frac{1}{2}\right) \left(\frac{1}{18}\right) + \left(\frac{-1}{2}\right) \left(\frac{5}{18}\right) = \frac{2}{9} t$ D. Finding eigenspherer for $Ty = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ eigenvalue 1: $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\begin{pmatrix} \varphi \\ \beta \end{pmatrix} = \begin{pmatrix} \varphi \\ \beta \end{pmatrix}, \begin{pmatrix} -i\beta \\ i \varphi \end{pmatrix} = \begin{pmatrix} \varphi \\ \beta \end{pmatrix} \xrightarrow{q=1} B = i \qquad iy+7 = \begin{pmatrix} 1 \\ i \end{pmatrix}_{\overline{AZ}}$ $eigenvalue -1: \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \varphi \\ \beta \end{pmatrix} = -\begin{pmatrix} \varphi \\ \beta \end{pmatrix}, \quad \begin{pmatrix} -i\beta \\ i\varphi \end{pmatrix} = \begin{pmatrix} -\varphi \\ -\beta \end{pmatrix} \longrightarrow \begin{pmatrix} z=1 \\ \beta = -i \end{pmatrix} \xrightarrow{|y-z| = \frac{1}{\sqrt{z}} \begin{pmatrix} 1 \\ -i \end{pmatrix}}$ prob of measuring $+\frac{1}{2}: |\langle y+1\rangle \rangle|^2 = |\frac{1}{\sqrt{2}}(1-i)\frac{1}{3}(\frac{1-2i}{2})|^2 = \frac{1}{18}$ prob of measuring $-\frac{t}{2}: |\langle y - 1 \rangle|^2 = |\frac{1}{\sqrt{2}}(1 i) \frac{1}{3} (\frac{1 - 2i}{2})|^2 = \frac{1}{18}$ $\langle S_{y} \rangle = (\frac{1}{2})(\frac{17}{18}) + (-\frac{1}{2})(\frac{1}{18}) = \frac{4}{9} \frac{1}{18}$