MATH 104 FINAL SOLUTIONS

1. (2 points each) Mark each of the following as True or False. No justification is required.
a) An unbounded sequence can have no Cauchy subsequence. False
b) An infinite union of Dedekind cuts is a Dedekind cut. False
c) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on $[a, b]$, there is a sequence of polynomials whose uniform limit on $[a, b]$ is f. True
d) If $f_{n} \rightarrow f$ uniformly on S, then $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on S. False
e) If f is differentiable on $[a, b]$ then it is integrable on $[a, b]$. True
2. Given a sequence $\left\{x_{n}\right\}$, define a sequence $\left\{y_{n}\right\}$ by setting

$$
y_{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} .
$$

a) (6 points) If $x_{n} \rightarrow a \in \mathbb{R}$, show that $y_{n} \rightarrow a \in \mathbb{R}$.

For any $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\epsilon$ for all $n>N$. Also, since x_{n} converges, it is bounded and we have that $\left|x_{n}-a\right|<M$ for all $n \in \mathbb{N}$, for some $M \in \mathbb{R}$. Let $\epsilon^{\prime}=(M+1) \epsilon$. Note that for $n>\max (N, N / \epsilon)$ we have

$$
\begin{aligned}
\left|y_{n}-a\right| & =\left|\frac{\left(x_{1}-a\right)+\left(x_{2}-a\right)+\cdots+\left(x_{n}-a\right)}{n}\right| \\
& \leq \frac{\left|x_{1}-a\right|+\cdots+\left|x_{n}-a\right|}{n} \\
& \leq \frac{M N}{n}+\frac{\epsilon(n-N)}{n} \\
& <(M+1) \epsilon=\epsilon^{\prime}
\end{aligned}
$$

Hence we have that $y_{n} \rightarrow a$.
b) (4 points) Give an example of a divergent sequence $\left\{x_{n}\right\}$ (i.e. with no limit in \mathbb{R}) for which $\left\{y_{n}\right\}$ as defined above converges.

Consider the sequence $\left\{x_{n}\right\}=\left\{(-1)^{n}\right\}$. This is a divergent sequence, but $\left\{y_{n}\right\}=\left\{-1,0,-\frac{1}{3}, 0,-\frac{1}{5}, 0, \ldots\right\}$ converges to 0 .
3. a) (8 points) Find an example or prove that the following does not exist: a monotone sequence that has no limit in \mathbb{R} but has a subsequence converging to a real number.

Such a thing does not exist. Any bounded monotone sequence has a limit in \mathbb{R}, so a monotone sequence $\left\{s_{n}\right\}$ that has no limit in \mathbb{R} is unbounded. Suppose $\left\{s_{n}\right\}$ is increasing (bounded below by
$\left.s_{1}\right)$. Since the sequence is unbounded, for any $M \in \mathbb{R}$ there exists some N such that $s_{N}>M$ and, since s_{n} is increasing, $s_{n}>M$ for all $n>N$ as well. Hence $\lim s_{n}=\infty$ and any subsequence will have the same limit. Similarly, if s_{n} is decreasing, it is not bounded below, and for any $M \in \mathbb{R}$ there exists some N such that $s_{N}<M$ and, since s_{n} is decreasing, $s_{n}<M$ for all $n>N$ as well. Hence $\lim s_{n}=-\infty$ and any subsequence will have the same limit.
b) (7 points) Let $x_{n}=\cos \frac{n \pi}{3}$. Find a convergent subsequence of $\left\{x_{n}\right\}$ and compute $\lim \sup x_{n}$.

Consider $\left\{x_{6 n}\right\}=\{1\}$. This sequence is converges to 1 , and, since $\cos x \leq 1$ for all x, we have that this is the largest possible subsequential limit of $\left\{x_{n}\right\}$. Hence $\lim \sup x_{n}=1$.
4) a) (6 points) Consider the series

$$
\sum_{n=1}^{\infty} \frac{6^{n}}{n^{n}}, \quad \sum_{n=1}^{\infty} \frac{1}{n+1 / 2} .
$$

For each of these, determine whether it converges or diverges and justify your answer.
For the first series, $\lim \sup \left(\frac{6^{n}}{n^{n}}\right)^{1 / n}=\lim \frac{6}{n}=0<1$ and so by the root test the series converges. For the second series, note that $\sum_{2}^{\infty} \frac{1}{n}$ diverges and has all positive terms, and $\sum_{1}^{\infty} \frac{1}{n+1 / 2}=$ $\sum_{2}^{\infty} \frac{1}{n-1 / 2}$, where $\frac{1}{n-1 / 2}>\frac{1}{n}$ for all n. Hence by the comparison test this series diverges.
b) (4 points) Let $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ be sequences of positive real numbers. Show that if $s_{n} / t_{n} \rightarrow 1$ then $\sum s_{n}$ and $\sum t_{n}$ either both converge or both diverge.

Since $s_{n} / t_{n} \rightarrow 1$, there is an $N \in \mathbb{N}$ such that

$$
\left|\frac{s_{n}}{t_{n}}-1\right|<\frac{1}{2}
$$

and so

$$
\frac{1}{2}<\frac{s_{n}}{t_{n}}<\frac{3}{2}
$$

and

$$
\frac{t_{n}}{2}<s_{n}<\frac{3 t_{n}}{2}
$$

for all $n \geq N$. If $\sum t_{n}$ converges, then $\sum_{N}^{\infty} \frac{3 t_{n}}{2}$ converges and by the above and the comparison test, $\sum_{N}^{\infty} s_{n}$ converges as well. Since $\sum s_{n}$ and $\sum_{N}^{\infty} s_{n}$ differ by a finite number of terms, one converges if and only if the other does, and so our conclusion holds for $\sum s_{n}$ as well.

Similarly, if $\sum s_{n}$ (and hence $\sum 2 s_{n}$) converges, then we have that since $t_{n}<2 s_{n}$ for all $n>N$, the series $\sum t_{n}$ converges by the comparison test. Hence $\sum s_{n}$ and $\sum t_{n}$ either both converge or diverge.
5) a) (5 points) Suppose that f_{n} converges uniformly to f on a set $S \subset \mathbb{R}$, and that g is a bounded
function on S. Prove that the product $g \cdot f_{n}$ converges uniformly to $g \cdot f$.
If $g(x)=0$ on S, then $\left\{g f_{n}\right\}=\{0\}$ which converges uniformly to $g f=0$. Otherwise, let $|g(x)|<M>0$ for all $x \in S$. For any $\epsilon>0$, there exists an $N \in \mathbb{R}$ such that $\left|f_{n}(x)-f(x)\right|<\epsilon / M$ for all $x \in S$, for all $n>N$. Then $\left|g(x) f_{n}(x)-g(x) f(x)\right|=|g(x)| \cdot\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in S$, for all $n>N$ and hence $g f_{n}$ converges uniformly to $g f$.
b) (5 points) Let $\left\{f_{n}\right\}$ be a sequence of continuous functions on $[a, b]$ that converges uniformly to f on $[a, b]$. Show that if $\left\{x_{n}\right\}$ is a sequence in $[a, b]$ and if $x_{n} \rightarrow x$, then $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)$.

Since f_{n} are continuous on the closed interval $[a, b]$ and converge uniformly to f, we have that f is continuous on $[a, b]$ as well. For any $\epsilon>0$ there exists an $N \in \mathbb{R}$ such that $\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|<\epsilon / 2$ for $n>N$. Furthermore, since $x_{n} \rightarrow x$ and $[a, b]$ is closed, we have $x \in[a, b]$. Thus f is continuous at x and there is a $\delta>0$ such that if $y \in S$ and $|x-y|<\delta$ then $|f(x)-f(y)|<\epsilon / 2$. Note that there is an $N^{\prime} \in \mathbb{R}$ such that $\left|x_{n}-x\right|<\delta$ for all $n>N^{\prime}$, and hence $\left|f\left(x_{n}\right)-f(x)\right|<\epsilon / 2$ for all $n>N^{\prime}$. Hence for $n>\max \left(N, N^{\prime}\right)$, we have that $\left|f_{n}\left(x_{n}\right)-f(x)\right|<\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\epsilon / 2<\epsilon$ and so $f_{n}\left(x_{n}\right) \rightarrow f(x)$ as desired.
6) a) (6 points) Prove that $d(x, y):=\min (|x-y|, 1)$ is a metric on \mathbb{R}.

First of all, $d(x, y) \in \mathbb{R}$ for all $x, y \in \mathbb{R}$, so d is indeed a function from $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$.
Next, note that $d(x, y) \geq 0$ for all $x, y \in \mathbb{R}$, since both 1 and $|x-y|$ are nonnegative for all $x, y \in \mathbb{R}$. Also, $d(x, y)=0$ if and only if $d(x, y)=|x-y|=0$, which is if and only if $x=y$.

Since $|x-y|=|y-x|$, we also have that $d(x, y)=\min (|x-y|, 1)=\min (|y-x|, 1)=d(y, x)$.
Finally, $d(x, y)=\min (|x-y|, 1) \leq \min (|x-z|+|z-y|, 1) \leq \min (|x-z|, 1)+\min (|z-y|, 1)=$ $d(x, z)+d(z, y)$. So all properties of a metric are satisfied.
b) (4 points) Is the set $(-5,5)$ open with respect to this metric? Prove that your answer is true.

This set is indeed open with respect to the above metric. Let $x \in(-5,5)$ and let $\delta=\min (\mid x-$ $5|,|x+5|, 1)$. Consider the neighborhood $N(x)$ of radius $\delta / 2$ of x with respect to the above metric. Since $\delta / 2<1$, we have that $d(x, y)=|x-y|$ for $y \in N(x)$, and since $\delta / 2<\min (|x-5|,|x+5|)$ we have that $|x-y|<\min (|x-5|,|x+5|)$. Hence $y \in(-5,5)$ and $N(x) \subset(-5,5)$ and x is an interior point in this interval.
7. a) (8 points) Find the Taylor series at 0 for $f(x)=e^{x}$. Determine its radius of convergence. You can use either the ratio or root test strategy for this.

Since $f^{(n)}(x)=e^{x}$ for all n, we have that $f^{(n)}(0)=1$ for all n, and the Taylor series is

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} .
$$

Since $\lim \sup \frac{n!}{(n+1)!}=0$, we have that the radius of convergence is ∞.
b) (7 points) Prove that the Taylor series in part (a) represents (is equal to) e^{x} for all $x \in \mathbb{R}$.

To show this, we use Taylor's theorem. In this case,

$$
R_{n}(x)=\frac{e^{y}}{(n+1)!} x^{n+1}
$$

where y is between 0 and x. If $x>0$ then $e^{y}<e^{x}$ and hence

$$
0<R_{n}(x)<e^{x} \cdot \frac{x^{n+1}}{(n+1)!} \rightarrow 0
$$

as $n \rightarrow \infty$, and hence $R_{n}(x) \rightarrow 0$ by the squeeze lemma. If $x<0$, then $x<y<0$ and so $e^{y}<1$ and

$$
\left|R_{n}(x)\right|<\frac{|x|^{n+1}}{(n+1)!} \rightarrow 0
$$

and so again $R_{n}(x) \rightarrow 0$. For $x=0, e^{x}=1=\sum_{0}^{\infty} \frac{0^{n}}{n!}$.
8. (10 points) Let f be a function defined on \mathbb{R} such that

$$
|f(x)-f(y)| \leq(x-y)^{2}
$$

for all $x, y \in \mathbb{R}$. Show that f is differentiable on \mathbb{R} and that $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$.
Note that for all $x, y \in \mathbb{R}$ we have

$$
\left|\frac{f(y)-f(x)}{y-x}\right| \leq|y-x| .
$$

Since $|y-x| \rightarrow 0$ as $y \rightarrow x$, we have by the squeeze lemma that

$$
\left|\frac{f(y)-f(x)}{y-x}\right|
$$

also tends to 0 as $y \rightarrow x$ and so

$$
\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}=0
$$

So $f(x)$ is differentiable on \mathbb{R} and its derivative is 0 everywhere.
9) a) (6 points) Let f and g be continuous functions on $[a, b]$ such that $\int_{a}^{b} f=\int_{a}^{b} g$. Show that there is an $x \in[a, b]$ such that $f(x)=g(x)$.

We have that $\int_{a}^{b}(f-g)=0$. Suppose $f(x)-g(x) \neq 0$ for any $x \in[a, b]$. Since f and g are continuous, so is $f-g$, and hence we have either $f(x)-g(x)<0$ for all $x \in[a, b]$ or $f(x)-$ $g(x)>0$ for all $x \in[a, b]$ (otherwise the intermediate value theorem would fail). In the first
case, $\int_{a}^{b}(f-g)>0$ since any Riemann sum corresponding to this interval is bounded below by $(b-a) \cdot \min (f(x)-g(x) \mid x \in[a, b])$ which exists since $f-g$ is continuous on $[a, b]$. In the second case, $\int_{a}^{b}(f-g)<0$ since any Riemann sum corresponding to this interval is bounded below by $(b-a) \cdot \max (f(x)-g(x) \mid x \in[a, b])$ which exists since $f-g$ is continuous on $[a, b]$. Hence the integral cannot be 0 which is a contradiction, and there must be some $x \in[a, b]$ such that $f(x)=g(x)$.
b) (4 points) Construct an example of functions f, g, both integrable on $[a, b]$, such that $\int_{a}^{b} f=\int_{a}^{b} g$ but $f(x) \neq g(x)$ for any $x \in[a, b]$.

Let $f(x)=1$ for $x \in[-1,0]$ and $f(x)=-1$ for $x \in[0,1]$. Let $g(x)=-f(x)$ on $[-1,1]$. Then $\int_{-1}^{1} f=\int_{-1}^{1} g=0$ but $f(x) \neq g(x)$ for any $x \in[-1,1]$.

