
MATH 104 FINAL SOLUTIONS

1. (2 points each) Mark each of the following as True or False. No justification is required.

a) An unbounded sequence can have no Cauchy subsequence. False

b) An infinite union of Dedekind cuts is a Dedekind cut. False

c) If f : R → R is continuous on [a, b], there is a sequence of polynomials whose uniform limit on

[a, b] is f . True

d) If fn → f uniformly on S, then f ′n → f ′ uniformly on S. False

e) If f is differentiable on [a, b] then it is integrable on [a, b]. True

2. Given a sequence {xn}, define a sequence {yn} by setting

yn =
x1 + x2 + · · ·+ xn

n
.

a) (6 points) If xn → a ∈ R, show that yn → a ∈ R.

For any ε > 0, there exists an N ∈ N such that |xn − a| < ε for all n > N . Also, since xn
converges, it is bounded and we have that |xn − a| < M for all n ∈ N, for some M ∈ R. Let

ε′ = (M + 1)ε. Note that for n > max(N,N/ε) we have

|yn − a| =

∣∣∣∣(x1 − a) + (x2 − a) + · · ·+ (xn − a)

n

∣∣∣∣
≤ |x1 − a|+ · · ·+ |xn − a|

n

≤ MN

n
+
ε(n−N)

n
< (M + 1)ε = ε′

Hence we have that yn → a.

b) (4 points) Give an example of a divergent sequence {xn} (i.e. with no limit in R) for which {yn}
as defined above converges.

Consider the sequence {xn} = {(−1)n}. This is a divergent sequence, but {yn} = {−1, 0,−1
3 , 0,−

1
5 , 0, . . . }

converges to 0.

3. a) (8 points) Find an example or prove that the following does not exist: a monotone sequence

that has no limit in R but has a subsequence converging to a real number.

Such a thing does not exist. Any bounded monotone sequence has a limit in R, so a monotone

sequence {sn} that has no limit in R is unbounded. Suppose {sn} is increasing (bounded below by



s1). Since the sequence is unbounded, for any M ∈ R there exists some N such that sN > M and,

since sn is increasing, sn > M for all n > N as well. Hence lim sn = ∞ and any subsequence will

have the same limit. Similarly, if sn is decreasing, it is not bounded below, and for any M ∈ R
there exists some N such that sN < M and, since sn is decreasing, sn < M for all n > N as well.

Hence lim sn = −∞ and any subsequence will have the same limit.

b) (7 points) Let xn = cos nπ3 . Find a convergent subsequence of {xn} and compute lim supxn.

Consider {x6n} = {1}. This sequence is converges to 1, and, since cosx ≤ 1 for all x, we have

that this is the largest possible subsequential limit of {xn}. Hence lim supxn = 1.

4) a) (6 points) Consider the series

∞∑
n=1

6n

nn
,

∞∑
n=1

1

n+ 1/2
.

For each of these, determine whether it converges or diverges and justify your answer.

For the first series, lim sup
(
6n

nn

)1/n
= lim 6

n = 0 < 1 and so by the root test the series converges.

For the second series, note that
∑∞

2
1
n diverges and has all positive terms, and

∑∞
1

1
n+1/2 =∑∞

2
1

n−1/2 , where 1
n−1/2 >

1
n for all n. Hence by the comparison test this series diverges.

b) (4 points) Let {sn} and {tn} be sequences of positive real numbers. Show that if sn/tn → 1

then
∑
sn and

∑
tn either both converge or both diverge.

Since sn/tn → 1, there is an N ∈ N such that∣∣∣∣sntn − 1

∣∣∣∣ < 1

2

and so
1

2
<
sn
tn

<
3

2
,

and
tn
2
< sn <

3tn
2

for all n ≥ N . If
∑
tn converges, then

∑∞
N

3tn
2 converges and by the above and the comparison test,∑∞

N sn converges as well. Since
∑
sn and

∑∞
N sn differ by a finite number of terms, one converges

if and only if the other does, and so our conclusion holds for
∑
sn as well.

Similarly, if
∑
sn (and hence

∑
2sn) converges, then we have that since tn < 2sn for all n > N ,

the series
∑
tn converges by the comparison test. Hence

∑
sn and

∑
tn either both converge or

diverge.

5) a) (5 points) Suppose that fn converges uniformly to f on a set S ⊂ R, and that g is a bounded



function on S. Prove that the product g · fn converges uniformly to g · f .

If g(x) = 0 on S, then {gfn} = {0} which converges uniformly to gf = 0. Otherwise, let

|g(x)| < M > 0 for all x ∈ S. For any ε > 0, there exists an N ∈ R such that |fn(x)− f(x)| < ε/M

for all x ∈ S, for all n > N . Then |g(x)fn(x)− g(x)f(x)| = |g(x)| · |fn(x)− f(x)| < ε for all x ∈ S,

for all n > N and hence gfn converges uniformly to gf .

b) (5 points) Let {fn} be a sequence of continuous functions on [a, b] that converges uniformly to

f on [a, b]. Show that if {xn} is a sequence in [a, b] and if xn → x, then limn→∞ fn(xn) = f(x).

Since fn are continuous on the closed interval [a, b] and converge uniformly to f , we have that f

is continuous on [a, b] as well. For any ε > 0 there exists an N ∈ R such that |fn(xn)−f(xn)| < ε/2

for n > N . Furthermore, since xn → x and [a, b] is closed, we have x ∈ [a, b]. Thus f is continuous

at x and there is a δ > 0 such that if y ∈ S and |x − y| < δ then |f(x) − f(y)| < ε/2. Note that

there is an N ′ ∈ R such that |xn − x| < δ for all n > N ′, and hence |f(xn) − f(x)| < ε/2 for all

n > N ′. Hence for n > max(N,N ′), we have that |fn(xn)− f(x)| < |fn(xn)− f(xn)|+ ε/2 < ε and

so fn(xn)→ f(x) as desired.

6) a) (6 points) Prove that d(x, y) := min(|x− y|, 1) is a metric on R.

First of all, d(x, y) ∈ R for all x, y ∈ R, so d is indeed a function from R× R→ R.

Next, note that d(x, y) ≥ 0 for all x, y ∈ R, since both 1 and |x − y| are nonnegative for all

x, y ∈ R. Also, d(x, y) = 0 if and only if d(x, y) = |x− y| = 0, which is if and only if x = y.

Since |x− y| = |y − x|, we also have that d(x, y) = min(|x− y|, 1) = min(|y − x|, 1) = d(y, x).

Finally, d(x, y) = min(|x− y|, 1) ≤ min(|x− z|+ |z − y|, 1) ≤ min(|x− z|, 1) + min(|z − y|, 1) =

d(x, z) + d(z, y). So all properties of a metric are satisfied.

b) (4 points) Is the set (−5, 5) open with respect to this metric? Prove that your answer is true.

This set is indeed open with respect to the above metric. Let x ∈ (−5, 5) and let δ = min(|x−
5|, |x+ 5|, 1). Consider the neighborhood N(x) of radius δ/2 of x with respect to the above metric.

Since δ/2 < 1, we have that d(x, y) = |x− y| for y ∈ N(x), and since δ/2 < min(|x− 5|, |x+ 5|) we

have that |x− y| < min(|x− 5|, |x+ 5|). Hence y ∈ (−5, 5) and N(x) ⊂ (−5, 5) and x is an interior

point in this interval.

7. a) (8 points) Find the Taylor series at 0 for f(x) = ex. Determine its radius of convergence.

You can use either the ratio or root test strategy for this.

Since f (n)(x) = ex for all n, we have that f (n)(0) = 1 for all n, and the Taylor series is

∞∑
n=0

xn

n!
.

Since lim sup n!
(n+1)! = 0, we have that the radius of convergence is ∞.



b) (7 points) Prove that the Taylor series in part (a) represents (is equal to) ex for all x ∈ R.

To show this, we use Taylor’s theorem. In this case,

Rn(x) =
ey

(n+ 1)!
xn+1

where y is between 0 and x. If x > 0 then ey < ex and hence

0 < Rn(x) < ex · xn+1

(n+ 1)!
→ 0

as n → ∞, and hence Rn(x) → 0 by the squeeze lemma. If x < 0, then x < y < 0 and so ey < 1

and

|Rn(x)| < |x|n+1

(n+ 1)!
→ 0

and so again Rn(x)→ 0. For x = 0, ex = 1 =
∑∞

0
0n

n! .

8. (10 points) Let f be a function defined on R such that

|f(x)− f(y)| ≤ (x− y)2

for all x, y ∈ R. Show that f is differentiable on R and that f ′(x) = 0 for all x ∈ R.

Note that for all x, y ∈ R we have ∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ≤ |y − x|.
Since |y − x| → 0 as y → x, we have by the squeeze lemma that∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣
also tends to 0 as y → x and so

lim
y→x

f(y)− f(x)

y − x
= 0.

So f(x) is differentiable on R and its derivative is 0 everywhere.

9) a) (6 points) Let f and g be continuous functions on [a, b] such that
∫ b
a f =

∫ b
a g. Show that

there is an x ∈ [a, b] such that f(x) = g(x).

We have that
∫ b
a (f − g) = 0. Suppose f(x) − g(x) 6= 0 for any x ∈ [a, b]. Since f and g are

continuous, so is f − g, and hence we have either f(x) − g(x) < 0 for all x ∈ [a, b] or f(x) −
g(x) > 0 for all x ∈ [a, b] (otherwise the intermediate value theorem would fail). In the first



case,
∫ b
a (f − g) > 0 since any Riemann sum corresponding to this interval is bounded below by

(b − a) ·min(f(x) − g(x)|x ∈ [a, b]) which exists since f − g is continuous on [a, b]. In the second

case,
∫ b
a (f − g) < 0 since any Riemann sum corresponding to this interval is bounded below by

(b−a) ·max(f(x)−g(x)|x ∈ [a, b]) which exists since f−g is continuous on [a, b]. Hence the integral

cannot be 0 which is a contradiction, and there must be some x ∈ [a, b] such that f(x) = g(x).

b) (4 points) Construct an example of functions f , g, both integrable on [a, b], such that
∫ b
a f =

∫ b
a g

but f(x) 6= g(x) for any x ∈ [a, b].

Let f(x) = 1 for x ∈ [−1, 0] and f(x) = −1 for x ∈ [0, 1]. Let g(x) = −f(x) on [−1, 1]. Then∫ 1
−1 f =

∫ 1
−1 g = 0 but f(x) 6= g(x) for any x ∈ [−1, 1].


