MATH 104 MIDTERM 2 solutions

1. (2 points each) Mark each of the following as True or False. No justification is required.
a) If $\sum a_{n}$ converges then $\lim a_{n}=0$. True
b) A real valued function is uniformly continuous on a compact subset of \mathbb{R} if and only if it is continuous on that subset. True
c) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined at $a \in \mathbb{R}$ and $s_{n}:=a+1 / n$, then $\lim f\left(s_{n}\right)=f(a)$. False
d) If $f(x)$ and $g(x)$ are uniformly continuous on \mathbb{R}, then $f \cdot g$ is uniformly continuous on \mathbb{R}. False
e) If $\sum a_{2 n}$ and $\sum a_{2 n+1}$ converge, then so does $\sum a_{n}$. True
2. a) (5 points) Determine whether the following series is absolutely convergent, non-absolutely convergent, or divergent:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

This series is absolutely convergent, since $\sum 1 /\left(n^{2}+1\right)$ is convergent: we know that $1 / n^{2}>0$ for all $n \geq 1$ and $\sum\left(1 / n^{2}\right)$ converges. Also, $\left|1 /\left(n^{2}+1\right)\right|<1 / n^{2}$ for all $n \geq 1$ and so by the comparison test $\sum 1 /\left(n^{2}+1\right)$ converges.
b) (5 points) Suppose a series $\sum a_{n}$ is convergent and $a_{n}>0$ for all n. What, if anything, can you deduce about the convergence or divergence of $\sum \frac{1}{1+a_{n}}$?

Since $\sum a_{n}$ converges, we have that $\lim a_{n}=0$ and, since $a_{n}+1 \neq 0$ for any n, our limit theorems imply that $\lim \frac{1}{1+a_{n}}=1 / 1=1 \neq 0$ and hence $\sum \frac{1}{1+a_{n}}$ diverges.
3. A real-valued function f on a set S is defined to be Lipschitz continuous if there exists a $K>0$ such that for all $x, y \in S$,

$$
|f(x)-f(y)| \leq K|x-y|
$$

a) (6 points) Prove that if f is Lipschitz continuous on S, then it is uniformly continuous on S.

Let f be Lipschitz continuous on S with constant K, and let $\varepsilon>0$. Let $\delta=\varepsilon /(K+1)$. Then if $x, y \in S$ and $|x-y|<\delta$, we have $|f(x)-f(y)|<K|x-y|<K \varepsilon /(K+1)<\varepsilon$ as desired.
b) (4 points) Show that \sqrt{x} is not Lipschitz continuous on $[0, \infty)$.

Suppose \sqrt{x} is Lipschitz continuous on $[0, \infty)$, and so for all $x, y \geq 0$ we have $|\sqrt{x}-\sqrt{y}| \leq K|x-y|=$ $K|\sqrt{x}-\sqrt{y}| \cdot|\sqrt{x}+\sqrt{y}|$. If x or y is nonzero, this means that $1 /|\sqrt{x}+\sqrt{y}| \leq K$, but this is not true for any $K>0$: take $0<x=y<1 / 4 K^{2}$ and we get that $1 /|\sqrt{x}+\sqrt{y}|>K$. Hence \sqrt{x} is not Lipschitz continuous on $[0, \infty)$.
4. (10 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function defined on \mathbb{R}. Show that the image $f(K):=\{f(k) \mid k \in$ $K\}$ of a compact set K is compact. (Hint: it may be helpful to show that if U is open then $f^{-1}(U)=\{x \in$
$\mathbb{R} \mid f(x) \in U\}$ is open $)$
We first prove the statement in the hint. Suppose U is open and let $x \in f^{-1}(U)$. Since $f(x) \in U$, there exists an r such that for all y with $|y-f(x)|<r$ we have $y \in U$. Since f is continuous, there exists a δ such that if $\left|x^{\prime}-x\right|<\delta$ then $\left|f\left(x^{\prime}\right)-f(x)\right|<r$. Since we have $f\left(x^{\prime}\right) \in U$ for all such x^{\prime}, we have $x^{\prime} \in f^{-1}(U)$ for all $\left|x-x^{\prime}\right|<\delta$ and hence x is an interior point of $f^{-1}(U)$ and $f^{-1}(U)$ is open as desired.

Now let K be compact and let $\left\{G_{a}\right\}$ be an open cover of $f(K)$. Since we just showed that the inverse image of any open set under f is open, we have that $\left\{f^{-1}\left(G_{a}\right)\right\}$ is an open cover of K, and since K is compact there is a finite subcover $\left\{f^{-1}\left(H_{a}\right)\right\}$ that covers K. Thus $\left\{f\left(f^{-1}\left(H_{a}\right)\right)\right\}=\left\{H_{a}\right\}$ is a finite subcover of $\left\{G_{a}\right\}$ covering $f(K)$ and hence $f(K)$ is compact.
5. a) (6 points) Determine whether

$$
\lim _{x \rightarrow 0}(\sin x)\left(\cos \frac{1}{x}\right)
$$

exists or not. If it exists, find its limit and prove that it is indeed the limit.
This limit exists and is 0 . To prove this, let $\varepsilon>0$ and let $\delta=\sin ^{-1}(\varepsilon / 2)$ in $(0, \pi / 2)$ if $\varepsilon<2$ and $\delta=\pi / 3$ otherwise. Then if $x \neq 0$ and $|x-0|=|x|<\delta$, we have $\left|(\sin x)\left(\cos \frac{1}{x}\right)-0\right|=\left|(\sin x)\left(\cos \frac{1}{x}\right)\right|<|\sin \delta|<\boldsymbol{\varepsilon}$ as desired.
b) (4 points) Suppose $f(x)$ and $g(x)$ are real valued, continuous functions on $S \subset \mathbb{R}$, and let a be the limit of some sequence in S. Prove or provide a counterexample:

$$
\lim _{\substack{x \rightarrow a \\ x \in S}} f(x) \cdot g(x)=\left(\lim _{\substack{x \rightarrow a \\ x \in S}} f(x)\right) \cdot\left(\lim _{\substack{x \rightarrow a \\ x \in S}} g(x)\right) .
$$

This is true if the limits are all finite, but if, for example, $f(x)=x, g(x)=1 /|x|$, and $a=0$, this is false.

