
April 16th, 2014

Chemistry 120A 2nd Midterm

1. (36 pts) For this question, recall the energy levels of the Hydrogenic
Hamiltonian (1-electron):

En = −me Z
2e4/2~2n2 = −E0 Z

2/n2 , n = 1, 2, 3, ...

where Ze is the nuclear charge, me is the electron mass, and E0 =
me e

4/2~2 ≈ 13.7 eV.

The eigenstates of the H-atom are ψn,l,m(r, θ, φ) = Rn,l(r)Yl,m(θ, φ).
In these states, the eigenvalues of the operators for square orbital an-
gular momentum, L2, and for the z-component of angular momentum,
Lz, are ~2 l(l + 1) and ~m, respectively.

If a Hydrogenic atom is subject to a magnetic field in the z-direction,
the additional term in the Hamiltonian is Emag = +µBLzB where µB =
e~/2mec is the Bohr magneton.

Figure 2: Radial distribution functions u(r) = rRnl(r)
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a) Circle those of the following that are true about the 1-electron
atom. Ignore the spin of the individual electron in this problem.

i. The ionization energy of an electron in ψ100 increases as Z2.

TRUE

ii. The radial distribution function of the ψ300 eigenstate con-
tains two nodes.

TRUE

iii. The ψ210 eigenstate can be described by a vibrationally ex-
cited state of the bare (l=0) coulomb potential.

FALSE: The ψ200 eigenstate (the 2s orbital) can be described
by a vibrationally excited stae of the bare (l=0) coulomb po-
tential.

iv. The square of the orbital angular momentum of an electron
in ψ310 is 2~2.

TRUE

v. If a magnetic field were applied in the z-direction, ψ211 would
no longer be an exact eigenstate of the Hamiltonian.

FALSE: The Hydrogen atom wavefunctions are eigenstates
of the Lz operator, so modifying the Hamiltonian by Emag =
µBLzB does not change the exact eigenstates of the system.

vi. A magnetic field applied in the z-direction would lower the
energy of an electron in ψ211.

FALSE: The ψ211 state is RAISED in energy. The ψ21−1 state
is LOWERED.
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b) Circle those of the following that are true for a two-electron He
atom, including coulomb repulsion between the electrons and spin.

i. The spatial wave function of the ground state is described by
ψ100(r1, θ1, φ1)ψ100(r2, θ2, φ2) with an effective Z less than 2.

TRUE

ii. The ionization energy of the ground state configuration is
greater than E0.

TRUE

iii. The spatial wave function of an excited state of Helium can
be described by ψ100(r1, θ1, φ1)ψ210(r2, θ2, φ2).

FALSE: The spatial wavefunction must be either symmetric
or antisymmetric with respect to exchange of electrons. This
wavefunction is neither.

iv. The ionization energy of the 1s2p configuration involving sin-
gle electron orbitals ψ100 and ψ210 is about E0/4.

TRUE

v. The 1s2p configuration can be either a spin singlet or spin
triplet.

TRUE

vi. The lowest energy state with a 1s2s configuration involving
single electron orbitals ψ100 and ψ200 is a spin singlet.
FALSE: The lowest energy state with a 1s2s configuration is
the spin triplet because it has the larger s (Hund’s rule).

3



2. (54 pts) Consider a particle in a box Hamiltonian with a bottom in the
shape of a V as shown in Figure 1. This potential could arise due to an
electron in the box interacting with the electric field of a point charge
(i.e. proton) at a distance away. The Hamiltonian of this system is:

H = −~2∇2/2m+ V (x)

where
V (x) = λ | x− a/2 |

for x > 0 and x < a and ∞ otherwise.

The eigenstates of the particle in a box are φn(x) = (
√

2/a) sin(knx),
coinciding with energy values E0

n = ~2k2n /2m, where kn = nπ/a, with
n = 1, 2, 3, ...

Recall that the formulas for non-degenerate perturbation theory through
2nd order are:

En = E0
n + Vnn −

∑
k

V 2
kn/(E

0
k − E0

n) (1)

and
Ψn = φ0

n −
∑
k

Vknφ
0
k/(E

0
k − E0

n) (2)

where E0
n and φ0

n are the unperturbed energies and wave functions.

You are given the following integrals to write answers in terms of the
given parameters (E0

n, a, and λ).∫ a

0

| x− a/2 | (2/a) sin[k1x] sin[k1x]dx = a/7 (3)

∫ a

0

| x− a/2 | (2/a) sin[k3x] sin[k3x]dx = a/5 (4)

∫ a

0

| x− a/2 | (2/a) sin[k1x] sin[k3x]dx = a/9 (5)
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(a) Use the first (n=1) and third (n=3) lowest lying states of the par-
ticle in a box potential to construct the Hamiltonian matrix that
describes the system with the V-shaped bottom.

Ĥ =

[
H1,1 H1,3

H3,1 H3,3

]
=

[
E0

1 + V1,1 V1,3
V3,1 E0

2 + V3,3

]
Using the integrals provided, this can be simplified to:

Ĥ =

[
E0

1 + a
7

a
9

a
9

E0
2 + a

5

]
(b) Using non-degenerate perturbation theory through second order,

what are the new energies and new wave functions associated with
the original n= 1 and n=3 states? Draw a level diagram describing
the old energies and how they split as a result of the perturbation.

Use equation (1) to find the energies:

E1 = E0
1 + V1,1 −

V 2
3,1

E0
3 − E0

1

= E0
1 +

a

7
− a2

81

1

E0
3 − E0

1

E3 = E0
3 + V3,3 −

V 2
1,3

E0
1 − E0

3

= E0
3 +

a

5
+
a2

81

1

E0
3 − E0

1

Use equation (2) to find the new wavefunctions:

Ψ1 = φ0
1 −

V3,1
E0

3 − E0
1

φ0
3 = φ0

1 −
a

9

1

E0
3 − E0

1

φ0
3

Ψ3 = φ0
3 −

V1,3
E0

1 − E0
3

φ0
1 = φ0

3 +
a

9

1

E0
3 − E0

1

φ0
1

(c) We did not consider the second (n=2) lowest lying state of the
particle in the box in order to calculate the change in the n=1
and n=3 energies. State which matrix elements we are neglecting
in doing so. What does ignoring the n=2 state imply about these
matrix elements?

We are ignoring the H1,2, H2,1, H2,2, H2,3, and H3,2 terms. These
could also be called the V1,2, V2,1, V2,3, V3,2, and E0

2 + V2,2 terms.
Ignoring these terms implies that they do not affect the new en-
ergies or wavefunctions of the n = 1 and n = 3 states. Note that
V1,2 = V2,1 = V2,3 = V3,2 = 0, but V2,2 6= 0
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(d) We could have included higher lying states of the unperturbed
system (n=4, 5, 6,...) to make a better approximation of the new
ground state wave function. Find the general rule for which un-
perturbed states would contribute.

Examining the symmetry of the unperturbed wavefunctions and
potential in the [0, a] interval,

n = odd φ0
n is even

n = even φ0
n is odd

V (x) even

Recalling that (odd)·(odd) = even, (odd)·(even) = odd and that
integrating an odd fuction over [0, a] is zero, we see that

Vm,n =


0 m even, n odd

nonzero m even, n even
nonzero m odd, n odd

(e) Now consider the wavefunction of two fermion particles (i.e. elec-
trons) in the box with a V-shaped bottom. Construct the wave-
function that describes its ground state, including spin. You can
use the solutions for the single particle found in part (b). For
spin up, use the symbol α, and for spin down, use the symbol β.
What is the energy of this state, ignoring any coulomb repulsions
between the two electrons?

We can use a Slater determinant to solve for the wavefunction
of this two-electron ground state. For one electron at x1 and the
other at x2:

Ψ(x1, x2) =
1√
2!

∣∣∣∣Ψ1(x1)α(1) Ψ1(x1)β(1)
Ψ1(x2)α(2) Ψ1(x2)β(2)

∣∣∣∣
Which is equivalent to:

Ψ(x1, x2) =
1√
2

= Ψ1(x1)Ψ1(x2) ∗ [α(1)β(2)− β(1)α(2)]

If we ignore Coulomb repulsion, the energy of the total system
should just be the sum of the energies of the two electrons sepa-
rately:

Etot = E1(1) + E1(2) = 2E1 = 2E0
1 +

2a

7
− 2a2

81

1

E0
3 − E0

1
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