
MCB100A/Chem130 
MidTerm Exam 2 

April 4, 2013 
 
Name______________________________________Student ID____________________ 
 
True/False  (2 points each). 

1.      T      The Boltzmann constant, kbT sets the energy scale for observing energy microstates  

2.      T     Atoms with favorable electronic configurations gain stability by forming covalent bonds 

3.      F      Conformational entropy favors the folded state over the unfolded state 

4.      F      QM potential energies are tractable for calculating the heat capacity of a protein 

5.      F     The highest potential energy is the most probable energy state at constant NVT  

6.      T     Statistical entropy can be applied to isothermal ideal gas expansion and ideal DNA pulling 

7.      F      The natural log of multiplicity, ln(W), is not extensive 

8.      F      The work done in an equilibrium process is less than work done in a non-equilibrium process 

9.      T      Chemical potential for ideal gas is only dependent on entropy changes with molecule numbers 

10.    T     The heat capacity at constant pressure is greater than the heat capacity at constant temperature 

11.    T    Cv is inversely proportional to the variance of the Gaussian distribution for energy at constant T 

12.     F     The units of entropy are kJ/mol 

13.    T     The Helmholtz free energy is available energy to do mechanical or chemical work 

14.     T     The chemical potential, µ, is the tendency of system to realize concentration changes. 

15.     F     A reaction will go forward if the reaction quotient, Q is greater than equilibrium constant K 

16.     T    Henderson-Hasselbach relates the pH to the acid dissociation constant Ka  

17.     F     The standard enthalpy and standard entropy are always independent of temperature, pressure 

18.     F     The chemical potential is related to the mechanical (expansion) work of Gibbs free energy 

19.     F    If protein A has a larger partition function than protein B then B has the higher heat capacity 

20.     T     Temperature signifies how multiplicity of bath grows with energy 

 



Multiple Choice  (5 points each). 

21. Molecular interactions are classified as long-ranged when the power law exponent of r-n is

(a) n < 3 
(c) n < 2 

(b) n = 3 
(d) n > 4

22. What is the value of kT
(a) ~2.5 kJ/mol 

(c) ~0.6 kcal/mol 

(b) ~210 cm-1 

(d) all of the above

23. What is the probability of observing system with energy Eν at constant N,V,T

(a) exp(-βEν

2)/Q 

(c) exp(-βEν)/Q 

(b) 1/Q 
(d) all of the above

24. If a covalent bond vibrational excitation is ~25kJ/mole, is it significantly populated at 298K?

(a) yes 

(c) maybe 
(b) no 
(d) all of the above

25. For an isolated system (constant N,V,E) all energy microstates
(a) have different Boltzmann probabilities 

(c) have different multiplicities 

(b) are equally probable 

(d) all of the above

26. Temperature signifies how multiplicity of bath (surroundings) grows with energy is embodied in

(a) (dE/dS)N,V
 

(c) (dE/dT)N,V 
(b) (dW/dE)N,V 
(d) all of the above

27. The condition for the multiplicity to be at an extremum or maximum for large N is 
(a) dW/dN=0 

(c) both (a) and (b) 

(b) d(lnW)/dN=0 

(d) none of the above

28. Which state function(s) predict spontaneous change?

(a) dS>0 

(c) dG<0 
(b) dA<0 
(d) all of the above

29. Direction of spontaneous change is when dN particles move from regions of 
(a) low chemical potential to high 

(c) high chemical potential to low 

(b) equal chemical potential 

(d) all of the above

30. The extent of a chemical reaction with large and negative values of ΔG°  correspond to

(a) Keq >> 1 

(c) Keq << 1 
(b) Keq ~ 1 
(d) none of the above



Short Problems (15 points each) 

31. The basis of proton NMR is that the hydrogen atom has a magnetic moment, so that in a magnetic 
field it can populate two states: spin up (S↑) and spin down (S↓). The energy difference in a 300 MHz 
NMR spectrometer is 3.5 x10-2kJ/mol. For N=100 hydrogen atoms and T = 300 K 
 
(a) Compute the relative population difference |NS↑−NS↓| / (NS↑+NS↓) 
Q = e0/kT + e−0.035/2.5 =1+ 0.9861

P(NS↑ ) =
e0

1.9861
P(NS↓ ) =

e−0.035/2.5

1.9861

NS↑ = 50.35 NS↓ = 49.65

NS↑ − NS↓ / (NS↑ + NS↓ ) = 0.007

 

       
 
 
(b) How does the population difference change with increasing temperature?  
 
It gets smaller 
 
 
 
 
32. Identify all relevant energetic interactions and their functional forms found for the following 
amino acid constituents:  
  
(a) Intermolecular interaction between CH4 and CH4 (model for alanine-alanine) 
 
No net charge, no other permanent poles, and unfavorable electron pairing (same electronic configuration) 

 

 
 
(b) Intermolecular interaction between NH3

+ and COO- (model for zwitter ionic termini) 
 

Net charge, no other permanent poles, and unfavorable electron pairing (same electronic configuration) 
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Long Problems (25 points each) 
 
33. E. coli DNA polymerase introduces about 1 incorrect base in 104 internucleotide linkages during 
replication “in vitro”. However, “in vivo” the proofreading function of E. coli DNA polymerase is much 
better, making 1 mistake in 108 nucleotide polymerization events.  
 
(a) If an average E. coli gene is ~ 100 bases long, what is the probability of introducing an error per 
gene in vitro?  
 
p(in vitro)= 10-2  mutations per gene 
 
 
(b) What is the probability of introducing an error per gene in vivo? 
 
p(in vivo)= 10-6 mutations per gene 
 
 
(c) Given the large number of nucleotide polymerization events, N, in E. Coli, we will assume the 
number of errors, Err, is distributed according to a Gaussian distribution  

P(Err) = 1
σ 2π

e−(Err−<Err>)
2 /2σ 2

; 

where <Err> is the mean error and σ  is the standard deviation. What is <Err> and σ  in vivo for 108 
gene polymerization events? What is <Err> and σ  in vitro for 108 nucleotide polymerization events? 
 
 
<Err>in vivo =p x N = 10-6 x 108 =102                         <Err>in vitro =p x N =10-2 x 108 =106  
  
 
σin vivo =[p x (1-p) x N]1/2 =[10-6 x (~1) x108]1/2=10    σin vitro = [10-2 x ~1 x 108]1/2=~1000 
 
 
(d) What is the probability that the number of errors will be 1 standard deviation larger than the 
mean in vivo? 
 
 

P(110) = 1
10 2π

e−(110−100)
2 /2(10)2 = 0.606

25.1
= 0.0398
  0.024

 

 
 
(e) What is the probability that the number of errors in vivo will be 5000 times smaller than the 
average number of errors in vitro? 
 

Err=1,000,000/5000=200   P 200( ) = 1
10 2π

e− 200−100( )2 2 10( )2 =
1.9×10−21

25.1
= 7.7×10−24  

 
 
 
 



34. The variation in the constant pressure heat capacity, CP, of a protein as a function of temperature 
is known as the melting curve, as it measures the relative populations of the folded and unfolded 
proteins in water. We would like to use CP measurements made along this curve to determine a single 
equation that gives the standard Gibbs free energy for unfolding, ΔGunfold

0 T( ) , at any temperature.   
 
(a) Draw a typical heat capacity curve for a protein in water from 25C to 90C. Name 3 intramolecular 
energy interactions that break and therefore new energy levels that become populated as the protein 
goes from the folded to the unfolded state. 
  

 
 

hydrogen bonds, van der Waals interactions (dispersion), salt bridges 
 
 
(b) Express ΔGunfold

0 T( )  in terms of ΔHunfold
0 T( )  and ΔSunfold

0 T( )  
 
 

ΔGunfold
 T( ) = ΔHunfold

 T( )−TΔSunfold T( )  
 
 
(c) Express ΔHunfold

0 T( )  in terms of CP
unfold ; express ΔH fold

0 T( )  in terms of CP
fold  

 
 

ΔHunfold
 T( ) = CP

unfold dT
T1

T2

∫   ΔH fold
 T( ) = CP

fold dT
T1

T2

∫  

 
(d) Express ΔSunfold

0 T( )  in terms of CP
unfold ; express ΔSfold

0 T( )  in terms of CP
fold  

 
 
 

ΔSunfold
 T( ) = CP

unfold

T
dT

T1

T2

∫   ΔSfold
 T( ) = CP

fold

T
dT

T1

T2

∫    



(continued) You are given the following thermodynamic cycles, where F corresponds to folded and U 
to unfolded 

F TM( ) →
ΔH3

0

U TM( )
ΔH2

0 ↑ ↓ ΔH4
0

F T( ) →
ΔH1

0
U T( )

  

F TM( ) →
ΔS
3
0

U TM( )
ΔS
2
0 ↑ ↓ ΔS

4
0

F T( ) →
ΔS
1
0

U T( )

 

(e) Which leg of the following thermodynamic cycle allows us to determine ΔHunfold
0 T( )  and ΔSunfold

0 T( )
and how would I determine it from the other three legs of the cycle? 

F T( )→
ΔH1

0

U T( ) F T( )→
ΔS1

0

U T( )  
 

ΔHunfold
 T( ) = ΔH2

 T( )+ ΔH3
 T( )+ ΔH4

 T( ) ΔSunfold
 T( ) = ΔS2

 T( )+ ΔS3
 T( )+ ΔS4

 T( )
  

(f) Which leg of the thermodynamic cycle measures ΔHunfold
0 TM( )  and ΔSunfold

0 TM( )? How would you get 
these quantities from experiment and what equations would you use? 

F T( )→
ΔH3

0

U T( ) F T( )→
ΔS3

0

U T( )  

ΔH3
 Tm( ) = CP

unfold dT
T=TM −Δ

T=TM +Δ

∫ area under peak of melting curve

ΔG3
 Tm( ) = ΔH3

 Tm( )−TΔS3
 Tm( ) = 0 → ΔS3

 Tm( ) = ΔH3
 Tm( )
T

 

 
(g) What are the expressions forΔHn

0  and ΔSn
0 for the other two legs of the cycle? 

ΔH2
 T( ) = CP

fold dT
T

TM

∫ = CP
fold TM −T( ) ΔH4

 T( ) = CP
unfold dT

TM

T

∫ = CP
unfold T −TM( )

ΔS2
 T( ) = CP

fold

T
dT

T

TM

∫ = CP
fold lnTM

T
ΔS4

 T( ) = CP
unfold

T
dT

TM

T

∫ = CP
unfold ln T

TM

 

(h) Write the expressions for  and show your work ΔGunfold
0 T( )



ΔHunfold
 T( ) =C fold

P TM −T( )+ΔH3
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unfold T −TM( ) ΔSunfold
 T( ) =C fold

P lnTM
T
+ΔS3

 TM( )+CP
unfold ln T

TM

ΔGunfold
 T( ) =C fold

P TM −T( )+ΔH3
 TM( )+CP

unfold T −TM( )−T C fold
P    lnTM

T
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 TM( )+CP
unfold ln T
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#

$
%

&

'
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ΔGunfold
 T( ) = ΔHunfold
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34. For the folding of a 100 residue protein, containing 6 glycines and 4 prolines, at 300K: 
(i) When unfolded, each residue except glycines and prolines can take 3 conformations of equal 
energy; glycine can take 4 conformations; proline can take 2 conformations.  
(ii) The conformation of the folded state has every residue in 1 possible conformation except glycine 
which has 2 conformations. 
(iii) A His-Asp ion pair, whose interaction energy is -350kJ/mol in vacuum, is found in the interior 
of a folded protein with dielectric constant εp=4. The ion pair remains intact when unfolded in 
water whose dielectric constant is εW=80.  
(iv) Assume water molecules have 6 possible configurations when surrounded by other waters, 
protein backbone or polar sidechains, otherwise they have only 2 possible configurations. 
(v) Every hydrophobic sidechain in unfolded state interacts with 2 water molecules, and all 
hydrophobic sidechains are buried in folded state. 
(v) Assume water-protein interaction energy is zero. 

 
(a) Calculate the Helmholtz free energy for the protein-protein interactions only (ΔAprotein). Show your 
work. Does ΔAprotein favor folding? 

ΔUprotein =
−350

4
− −350

80
⎛
⎝⎜

⎞
⎠⎟ = −83.125 kj/mol

−TΔSprotein = −2.5 kj/mol ln19426 − ln3904624( ) = −2.5 kj/mol 4.159 −109.97( ) = 264.528 kj/mol

ΔAprotein = ΔUprotein −TΔSprotein = −83.125 kj/mol+264.528 kj/mol=181.403 kj/mol         no does not favor folding

 

 
(b) Calculate the free energy for water,non-hydrophobic interactionss (ΔAnon-hphobe,H2O). Show your 
work. Does ΔAnon-hphobe,H2O favor folding over nonfolding?  
ΔUnon−hphobe,H 2O = 0

−TΔSnon−hphobe,H 2O = −2.5 kj/mol ln6#nonhphobe−water − ln6#nonhphobe−water( ) = 0

ΔAnon−hphobe,H 2O = Afold − Aunfold = ΔUnon−hphobe,H 2O −TΔSnon−hphobe,H 2O
= 0         no does not favor folding

 

 
(c) Calculate the free energy for water,hydrophobic interactions (ΔA will be per hydrophobic residue). 
Show your work. What is minimum number of hydrophobic sidechains required to ensure that folding 
in water is spontaneous at room temperature (300 K)? 
ΔUhphobe,H 2O = 0

−TΔShphobe,H 2O = −2.5 kj/mol ln62 − ln22( ) = −5.493 kJ/mol/#hphobe

nhphobeΔAhphobe,H 2O = Afold − Aunfold = ΔUhphobe,H 2O −TΔShphobe,H 2O
= −5.493nhphobe  kJ/mol  

ΔAprotein + ΔAnon−hphobe,H 2O + nhphobeΔAhphobe,H 2O = 0 181.403 kJ/mol=5.493nhphobe  kJ/mol  nhphobe = 33 
      

 



(Extra Credit). To find the probability, pν,  that both minimizes the Gibbs free energy and maximizes 
the entropy, we start with the following equation 

L = −kb pv ln pv +α
ν
∑ pvEv + λ

ν
∑ pvVv +

ν
∑ γ pv −1

ν
∑⎛⎝⎜

⎞
⎠⎟

 

 
(a) What is the first term on the right-hand side of the equation?  
 

The probabilistic version of entropy 
 
(b) What is the meaning of the second term on the right-hand side of the equation? 
 

The system exchanges energy with the bath (energy fluctuates) 
 

(c) What is the meaning of the third term on the right-hand side of the equation? 
 

Volume fluctuations 
 
(d) What is the meaning of the fourth term on the right-hand side of the equation? 
 

The probability summed over all microstates adds up to 1 
 
(e) What is the meaning of L (the Lagrangian)? 
 

It is the maximization of the entropy (2nd Law) under the constraints that energy and volume fluctuate 
 
(f) How do I determine the probability, pν? 
 
dL
dpν

= 0; dL
dpν

= −kb 1+ ln pν( )+αEν + λVν + γ = 0 pν = exp
αEν + λVν + γ − kb

kb

⎛
⎝⎜

⎞
⎠⎟

 

 
(g) Can you solve for the α  Lagrange multiplier? 
 
S = −kb pν ln pν

ν
∑ − kb ln pν = − αEν + λVν + γ − kb( )

S = − pν
ν
∑ αEν + λVν + γ − kb( ) S = −α E − λ V + γ − kb( ) pν

ν
∑

∂S
∂ E

⎛
⎝⎜

⎞
⎠⎟ N , V

= 1
T
= −α

 


