Make sure you show all your work and justify your answers.

Problem 1 - Electrical conduction (20 pts)
Remember: always write your symbolic solution before the numerical solution.
A current I is passed through a cylindrical Ag wire of cross-sectional area A and resistivity ρ.
a) Estimate the magnitude of the electric field E in the wire.

Assume Ag has a mass density d, an atomic mass $m_{A g}$, and 1 free electron per atom.
b) Estimate the magnitude of the drift velocity, v_{d}, of the conduction electrons.

Assume that the free electrons, of mass m_{e}, can be treated as an ideal gas.
c) Estimate the rms speed of the conduction electrons at room temperature.
d) Comment on the many orders of magnitude difference between v_{d} and $v_{r m s}$.
$\mathrm{I}=5 \mathrm{~A} ; \mathrm{A}=10^{-6} \mathrm{~m}^{2} ; \rho=3 \times 10^{-8} \Omega \mathrm{~m} ; \mathrm{e}=2 \times 10^{-19} \mathrm{C} ; \mathrm{d}=10^{4} \mathrm{~kg} / \mathrm{m}^{3}$;
$\mathrm{m}_{\mathrm{Ag}}=2 \times 10^{-25} \mathrm{~kg} / \mathrm{at}$.; $\mathrm{k}_{\mathrm{B}}=10^{-23} \mathrm{~J} / \mathrm{K} ; \mathrm{m}_{\mathrm{e}}=10^{-30} \mathrm{~kg}$.

Problem 2 - Electric field (20 pts)

A flat ring of inner radius R_{1} and outer radius R_{2} carries a non-uniform surface charge density $\sigma(r)=\frac{\beta}{r}$, where β is a positive constant, and r is the radial distance measured from the center of the ring.

Calculate the electric field produced by such a charge distribution at any point on the symmetry axis.

Problem 3 - Electric field (20 pts)

A solid insulating cylinder of infinite length and radius R carries a non-uniform volume charge density $\rho(r)=\frac{\alpha}{r} e^{-\frac{r}{a}}$, where α and a are both positive constants, and r is the radial distance measured from the symmetry axis of the cylinder.

Calculate the electric field produced at any point by the charge distribution and draw the electric field vector at 2 different points of your choice.

Problem 4-Electric potential (20 pts)
A solid metallic sphere of radius R_{1} and carrying some charge Q is in electrostatic equilibrium.
a) Calculate the electric field and electric potential at any point, using $\mathrm{V}(\infty)=0$ as the reference.
b) Draw the electric field lines and equipotential lines around the sphere.

A second metallic sphere of radius R_{2}, carrying no net charge, is placed far from the first one.
c) Calculate the electric charge of each sphere if they are electrically connected to each other by a very thin wire.
d) Draw the field lines corresponding to the new charge distribution.

Problem 5 - Capacitor (20 pts)

Let's consider a parallel-plate capacitor, whose plates carry some charge $+Q$ and $-Q$, have a surface area L^{2}, and are separated by a constant distance d, with $d \ll L$.
a) Calculate the electric field created between the $\mathbf{2}$ charged plates.

Now one of the 2 plates is slightly tilted by a small angle $\theta(\theta \ll d / L)$.
b) Determine the capacitance C and the potential energy U stored by this capacitor.
Hint: you may consider this capacitor as a combination of infinitesimal capacitors.

$$
\begin{aligned}
& \frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T \\
& \vec{F}=\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0} r^{2}} \hat{r} \\
& \vec{F}=Q \vec{E} \\
& \vec{E}=\int \frac{d Q}{4 \pi \epsilon_{0} r^{2}} \hat{r} \\
& \rho=\frac{d Q}{d V} \\
& \sigma=\frac{d Q}{d A} \\
& \lambda=\frac{d Q}{d l} \\
& \vec{p}=Q \vec{d} \\
& \vec{\tau}=\vec{p} \times \vec{E} \\
& U=-\vec{p} \cdot \vec{E} \\
& \Phi_{E}=\int \vec{E} \cdot d \vec{A} \\
& \oint \vec{E} \cdot d \vec{A}=\frac{Q_{\text {encl }}}{\epsilon_{0}} \\
& \Delta U=Q \Delta V \\
& V=-\int \vec{E} \cdot d \vec{l} \\
& V=\int \frac{d Q}{4 \pi \epsilon_{0} r} \\
& \vec{E}=-\vec{\nabla} V \\
& Q=C V \\
& C_{e q}=C_{1}+C_{2}(\text { In parallel }) \\
& \frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}} \text { (In series) } \\
& \epsilon=\kappa \epsilon_{0} \\
& U=\frac{Q^{2}}{2 C} \\
& U=\int \frac{\epsilon_{0}}{2}|\vec{E}|^{2} d V \\
& I=\frac{d Q}{d t} \\
& \Delta V=I R \\
& R=\rho \frac{l}{A} \\
& \rho(T)=\rho\left(T_{0}\right)\left(1+\alpha\left(T-T_{0}\right)\right) \\
& P=I V \\
& I=\int \vec{j} \cdot d \vec{A} \\
& \vec{j}=n Q \overrightarrow{v_{d}}=\frac{\vec{E}}{\rho} \\
& R_{e q}=R_{1}+R_{2}(\text { In series }) \\
& \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \text { (In parallel) } \\
& \sin (x) \approx x \\
& \cos (x) \approx 1-\frac{x^{2}}{2} \\
& e^{x} \approx 1+x+\frac{x^{2}}{2} \\
& (1+x)^{\alpha} \approx 1+\alpha x+\frac{(\alpha-1) \alpha}{2} x^{2} \\
& \ln (1+x) \approx x-\frac{x^{2}}{2} \\
& \vec{\nabla} f=\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{\partial f}{\partial z} \hat{z} \\
& d \vec{l}=d r \hat{r}+r d \theta \hat{\theta}+d z \hat{z} \\
& \text { (Cylindrical Coordinates) } \\
& \vec{\nabla} f=\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{1}{r \sin (\theta)} \frac{\partial f}{\partial \phi} \hat{\phi} \\
& d \vec{l}=d r \hat{r}+r d \theta \hat{\theta}+r \sin (\theta) d \phi \hat{\phi} \\
& \text { (Spherical Coordinates) } \\
& \int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}} \\
& \int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{(2 n)!}{n!2^{2 n+1}} \sqrt{\frac{\pi}{a^{2 n+1}}} \\
& \int_{0}^{\infty} x^{2 n+1} e^{-a x^{2}} d x=\frac{n!}{2 a^{n+1}} \\
& \int\left(1+x^{2}\right)^{-1 / 2} d x=\ln \left(x+\sqrt{1+x^{2}}\right) \\
& \int\left(1+x^{2}\right)^{-1} d x=\arctan (x) \\
& \int\left(1+x^{2}\right)^{-3 / 2} d x=\frac{x}{\sqrt{1+x^{2}}} \\
& \int \frac{x}{1+x^{2}} d x=\frac{1}{2} \ln \left(1+x^{2}\right) \\
& \int \frac{1}{\cos (x)} d x=\ln \left(\left|\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right|\right) \\
& \int \frac{1}{\sin (x)} d x=\ln \left(\left|\tan \left(\frac{x}{2}\right)\right|\right) \\
& \sin (2 x)=2 \sin (x) \cos (x) \\
& \cos (2 x)=2 \cos ^{2}(x)-1 \\
& \sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b) \\
& \cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b) \\
& 1+\cot ^{2}(x)=\csc ^{2}(x) \\
& 1+\tan ^{2}(x)=\sec ^{2}(x)
\end{aligned}
$$

