Solutions to Midterm 2

Problem 1. The center O of the rolling cylinder moves in a circle about B. Thus

$$
v_{O}=O B \dot{\theta}=3 r \dot{\theta}
$$

The contact point C is the instantaneous center of zero velocity of the rolling cylinder.

$$
\omega=\frac{v_{O}}{r}=\frac{3 r \dot{\theta}}{r}=3 \dot{\theta}
$$

Any line on the rolling cylinder has angular velocity ω. Since A moves in a circle relative to C,

$$
v_{A}=A C \omega_{A C}=2 r \cos 30^{\circ} \omega=3 \sqrt{3} r \dot{\theta}
$$

Problem 2. Let v_{0} be the velocity of carriage after impact. For the system of sphere and carriage,

$$
\begin{equation*}
\Delta G_{x}=0 \quad \Rightarrow \quad 2(10)=2\left(-v^{\prime} \cos \theta\right)+10 v_{0} \tag{1}
\end{equation*}
$$

In the oblique central impact, momentum of the sphere is conserved in t-direction. Thus

$$
\begin{equation*}
\Delta G_{t}=0 \quad \Rightarrow \quad 2\left(10 \sin 30^{\circ}\right)=2 v^{\prime} \sin \left(\theta-30^{\circ}\right) \tag{2}
\end{equation*}
$$

Restitution in n-direction gives

$$
\begin{equation*}
0.6=\frac{v_{0} \cos 30^{\circ}+v^{\prime} \cos \left(\theta-30^{\circ}\right)}{10 \cos 30^{\circ}} \tag{3}
\end{equation*}
$$

There are 3 unknowns v^{\prime}, θ and v_{0} in 3 equations. Upon solution,

$$
\begin{aligned}
& v^{\prime}=6.04 \mathrm{~m} / \mathrm{s} \\
& \theta=85.9^{\circ} \\
& v_{0}=2.087 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

For the carriage after impact,

$$
\begin{aligned}
& \Delta T+\Delta V_{e}=0 \\
\Rightarrow & -\frac{1}{2}(10) v_{0}^{2}+\frac{1}{2}(1600) \delta^{2}=0 \\
\Rightarrow & \delta= \pm 0.165
\end{aligned}
$$

Take the positive root to write

$$
\delta=165 \mathrm{~mm}
$$

Problem 3.

The wheel shown rolls without slipping on the horizontal surface. At the instant shown, it has an angular velocity of $\dot{\theta_{d}}$ and an angular acceleration of $\ddot{\theta_{d}}$.
a) Determine the single vector equation and the corresponding two scalar equations for $\dot{\theta}_{1}$ and $\dot{\theta}_{2}$, in terms of general $l_{1}, l_{2}, l_{3}, R, \theta_{1}, \theta_{2}, \dot{\theta}_{d}$ and $\ddot{\theta}_{d}(40 \%)$
First compare two vector relationships for the position C :
$\boldsymbol{r}_{\boldsymbol{C}}=\boldsymbol{r}_{\boldsymbol{A}}+\boldsymbol{r}_{\boldsymbol{B} / \boldsymbol{A}}+\boldsymbol{r}_{\boldsymbol{C} / \boldsymbol{B}} \rightarrow \boldsymbol{r}_{\boldsymbol{C}}=l_{1} \boldsymbol{e}_{\boldsymbol{r} \mathbf{1}}+l_{2} \boldsymbol{e}_{\boldsymbol{r} 2}-l_{3} \boldsymbol{e}_{\boldsymbol{r} \boldsymbol{d}}$
where θ_{1}, θ_{2} and their corresponding basis have defined in the standard, counterclockwise fashion. Next, differentiate:
$\boldsymbol{v}_{\boldsymbol{C}}=l_{1}{\dot{\theta_{1}}}_{\boldsymbol{\theta}} \boldsymbol{e}_{\boldsymbol{\theta}}+l_{2} \dot{\theta}_{2} \boldsymbol{e}_{\boldsymbol{\theta} 2}-l_{3} \dot{\theta_{d}} \boldsymbol{e}_{\boldsymbol{\theta} \boldsymbol{d}}$
and, recognizing that we can determine $\boldsymbol{v}_{\boldsymbol{c}}$ from the rolling condition:
$\boldsymbol{v}_{\boldsymbol{c}}=-\omega_{\boldsymbol{d}} \times\left(\boldsymbol{r}_{\boldsymbol{p}}-\boldsymbol{r}_{\boldsymbol{c}}\right)=-\dot{\theta_{d}} \boldsymbol{E}_{\mathbf{z}} \times-R \boldsymbol{E}_{\boldsymbol{y}} \rightarrow \boldsymbol{v}_{\boldsymbol{c}}=-R \dot{\theta_{d}} \boldsymbol{E}_{\boldsymbol{x}}$
we have:

$$
-R \dot{\theta_{d}} \boldsymbol{E}_{\boldsymbol{x}}+l_{3} \dot{\theta_{d}} \boldsymbol{e}_{\boldsymbol{\theta} \boldsymbol{d}}=l_{1} \dot{\theta_{1}} \boldsymbol{e}_{\boldsymbol{\theta} 1}+l_{2} \dot{\theta_{2}} \boldsymbol{e}_{\boldsymbol{\theta} 2}
$$

Dotting with the x and y basis vectors yields, in matrix form,

$$
\left[\begin{array}{cc}
-l_{1} \sin \left(\theta_{1}\right) & -l_{2} \sin \left(\theta_{2}\right) \\
l_{1} \cos \left(\theta_{1}\right) & l_{2} \cos \left(\theta_{2}\right)
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{c}
-\dot{\theta_{d}}\left\{R+l_{3} \sin \left(\theta_{d}\right)\right\} \\
\dot{\theta}_{d} l_{3} \cos \left(\theta_{d}\right)
\end{array}\right]
$$

For the numerical values of the constants as given with $\dot{\theta_{d}}=-6 \mathrm{rad} / \mathrm{sec}$ and $\ddot{\theta_{d}}=-2$ $\mathrm{rad} / \mathrm{sec}^{2}$, determine $\dot{\theta}_{1}$ and $\dot{\theta}_{2}(10 \%)$

$$
\left[\begin{array}{cc}
-5 & -3 \\
0 & -10
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{c}
6\{5+3\} \\
0
\end{array}\right]
$$

Solution yields $\dot{\theta}_{1}=-9.6 \mathrm{rad} / \mathrm{s}$ and $\dot{\theta}_{2}=0 \mathrm{rad} / \mathrm{sec}$
b) Determine the single vector equation and the corresponding two scalar equations for $\ddot{\theta}_{1}$ and $\ddot{\theta}_{2}$, in terms of general $l_{1}, l_{2}, l_{3}, R, \theta_{1}, \dot{\theta}_{1}, \theta_{2}, \dot{\theta_{2}}, \dot{\theta_{d}}$ and $\ddot{\theta}_{d}(45 \%)$
Differentiating yet again, we have:

$$
\boldsymbol{a}_{\boldsymbol{c}}=l_{1}\left\{\ddot{\theta}_{1} \boldsymbol{e}_{\boldsymbol{\theta} 1}-\dot{\theta}_{1}^{2} \boldsymbol{e}_{\boldsymbol{r} 1}\right\}+l_{2}\left\{\ddot{\theta}_{2} \boldsymbol{e}_{\boldsymbol{\theta} 2}-{\dot{\theta_{2}}}^{2} \boldsymbol{e}_{\boldsymbol{r} 2}\right\}-l_{3}\left\{\ddot{\theta}_{d} \boldsymbol{e}_{\boldsymbol{\theta} \boldsymbol{d}}-\dot{\theta}_{d}{ }^{2} \boldsymbol{e}_{r d}\right\}
$$

but $\boldsymbol{a}_{\boldsymbol{c}}=-R \ddot{\theta}_{d} \boldsymbol{E}_{\boldsymbol{x}}$, so we have:

$$
-R \ddot{\theta}_{d} \boldsymbol{E}_{\boldsymbol{x}}+l_{3}\left\{\ddot{\theta}_{d} \boldsymbol{e}_{\boldsymbol{\theta} \boldsymbol{d}}-\dot{\theta}_{d}^{2} \boldsymbol{e}_{\boldsymbol{r} \boldsymbol{d}}\right\}+l_{1} \dot{\theta}_{1}^{2} \boldsymbol{e}_{\boldsymbol{r} 1}+l_{2} \dot{\theta}_{2}^{2} \boldsymbol{e}_{\boldsymbol{r} 2}=l_{1} \ddot{\theta}_{1} \boldsymbol{e}_{\boldsymbol{\theta} 1}+l_{2} \ddot{\theta}_{2} \boldsymbol{e}_{\boldsymbol{\theta} 2}
$$

Dotting with the x and y basis vectors yields, in matrix form,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-l_{1} \sin \left(\theta_{1}\right) & -l_{2} \sin \left(\theta_{2}\right) \\
l_{1} \cos \left(\theta_{1}\right) & l_{2} \cos \left(\theta_{2}\right)
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right]} \\
& \quad=\left[\begin{array}{c}
-\ddot{\theta}_{d}\left\{R+l_{3} \sin \left(\theta_{d}\right)\right\}-l_{3} \dot{\theta}_{d}{ }^{2} \cos \left(\theta_{d}\right)+l_{1} \dot{\theta}_{1}{ }^{2} \cos \left(\theta_{1}\right)+l_{2} \dot{\theta}_{2}{ }^{2} \cos \left(\theta_{2}\right) \\
\ddot{\theta}_{d} l_{3} \cos \left(\theta_{d}\right)-l_{3} \dot{\theta}_{d}{ }^{2} \sin \left(\theta_{d}\right)+l_{1}{\dot{\theta_{1}}}^{2} \sin \left(\theta_{1}\right)+l_{2} \dot{\theta}_{2}{ }^{2} \sin \left(\theta_{2}\right)
\end{array}\right]
\end{aligned}
$$

For the numerical values of the constants given and the previously determined values of $\dot{\theta}_{1}$ and $\dot{\theta}_{2}$, determine $\ddot{\theta}_{1}$ and $\ddot{\theta}_{2}$. (5\%)

$$
\left[\begin{array}{cc}
-5 & -3 \\
0 & -10
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta_{2}}
\end{array}\right]=\left[\begin{array}{c}
2\{5+3\}-0+0+0 \\
0-3(-6)^{2}+5(-9.6)^{2}+3(0)^{2}
\end{array}\right]
$$

Solution yields $\ddot{\theta}_{1}=17.97 \mathrm{rad} / \mathrm{s}^{2}$ and $\ddot{\theta}_{2}=-35.28 \mathrm{rad} / \mathrm{s}^{2}$

