Solutions to Midterm 1

Problem 1.
(a)

$$
\begin{aligned}
& a_{A}=\frac{8}{3.6}=2.22 \mathrm{~m} / \mathrm{s}^{2} \\
& \left(a_{B}\right)_{t}=-\frac{8}{3.6}=-2.22 \mathrm{~m} / \mathrm{s}^{2} \\
& \left(a_{B}\right)_{n}=\frac{v_{B}^{2}}{\rho}=\frac{(100 / 3.6)^{2}}{300}=2.57 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Attach a translating (x, y) frame to car A with the x-axis directed along v_{A}. Thus

$$
\begin{array}{ll}
& \mathbf{a}_{B}=\mathbf{a}_{A}+\mathbf{a}_{B / A} \\
\Rightarrow & -2.22 \mathbf{i}+2.57 \mathbf{j}=2.22 \mathbf{i}+\mathbf{a}_{B / A} \\
\Rightarrow & \mathbf{a}_{B / A}=-4.44 \mathbf{i}+2.57 \mathbf{j} \\
\Rightarrow & a_{B / A}=5.13 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

(b) A coordinate system attached to B (with the x-axis in the direction of v_{B}) is a rotating system. It can be shown from rigid-body kinematics that the acceleration $\mathbf{a}_{\text {rel }}$ of car A as observed from car B is

$$
\begin{aligned}
& \mathbf{a}_{\mathrm{rel}} \\
& \Rightarrow \quad \mathbf{a}_{A}-\mathbf{a}_{B}-\dot{\boldsymbol{\omega}} \times \mathbf{r}_{A / B}-\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{A / B}\right)-2 \boldsymbol{\omega} \times \mathbf{v}_{\mathrm{rel}} \\
& \mathbf{a}_{\mathrm{rel}} \neq \mathbf{a}_{A}-\mathbf{a}_{B}=-\mathbf{a}_{B / A}
\end{aligned}
$$

where $\mathbf{v}_{\text {rel }}$ is the velocity of car A as observed from car B.

Problem 2.
Sum of forces acting on the entire system:

$$
\begin{gathered}
\Sigma F_{x}=-P+2 \mu_{k} m g=2 m \ddot{x} \\
\ddot{x}=\mu_{k} g-\frac{P}{2 m}
\end{gathered}
$$

Sum of forces acting on block A (note that the critical static friction is known):

$$
\begin{gathered}
\Sigma F_{y}=-m g+N_{A} \cos \theta-\mu_{s} N_{A} \sin \theta=0 \\
\Sigma F_{x}=-N_{A} \sin \theta-\mu_{s} N_{A} \cos \theta=m \ddot{x}=\mu_{k} m g-\frac{P}{2}
\end{gathered}
$$

Solve for N_{A}

$$
N_{A}=\frac{m g}{\cos \theta-\mu_{s} \sin \theta}
$$

Solve for P

$$
P=2 m g\left(\mu_{k}+\frac{\sin \theta+\mu_{s} \cos \theta}{\cos \theta-\mu_{s} \sin \theta}\right)=125.44 \mathrm{~N}
$$

Problem 3.

1. $\boldsymbol{G}_{A,+}-\boldsymbol{G}_{A,-}=\boldsymbol{I}_{A}$; calling $r_{A}^{2}:=L^{2}+y_{A}^{2}$, we have

$$
\begin{aligned}
m_{A} v_{A} & \left\{\left(\frac{L}{r_{A}}\right) \boldsymbol{E}_{\boldsymbol{X}}+\left(\frac{y_{A}}{r_{A}}\right) \boldsymbol{E}_{\boldsymbol{Y}}\right\}-m_{A} v_{i} \boldsymbol{E}_{\boldsymbol{X}}=\boldsymbol{I}_{\boldsymbol{A}} \\
\cdot \boldsymbol{E}_{\boldsymbol{x}} \rightarrow & m_{A}\left(v_{A}=\frac{r_{A}}{\Delta t_{A}}\right)\left(\frac{L}{r_{A}}\right)-m_{A} v_{i}=I_{A, x} \\
\rightarrow I_{A, x}= & m_{A}\left(\frac{L}{\Delta t_{A}}-v_{i}\right)=4\left(\frac{10}{3}-4\right)=-2.667 \mathrm{~N} \\
& \cdot \boldsymbol{E}_{\boldsymbol{y}} \rightarrow m_{A}\left(\frac{r_{A}}{\Delta t_{A}}\right)\left(\frac{y_{A}}{r_{A}}\right)=I_{A, y} \\
\rightarrow & I_{A, y}=m_{A}\left(\frac{y_{A}}{\Delta t_{A}}\right)=4\left(\frac{7.5}{3}\right)=10 \mathrm{~N}
\end{aligned}
$$

so $\boldsymbol{I}_{\boldsymbol{A}}=-2.667 \boldsymbol{E}_{\boldsymbol{X}}+10 \boldsymbol{E}_{\boldsymbol{y}} \mathrm{N}$
2. $\boldsymbol{G}_{\boldsymbol{B},+}-\boldsymbol{G}_{\boldsymbol{B},-}=\boldsymbol{I}_{\boldsymbol{B}}$; calling $r_{B}^{2}:=L^{2}+y_{B}^{2}$, and of course recognizing that $\boldsymbol{I}_{\boldsymbol{A}}$ and $\boldsymbol{I}_{\boldsymbol{B}}$ are equal and opposite, we have

$$
\begin{gathered}
\boldsymbol{G}_{\boldsymbol{B},+}-\boldsymbol{G}_{\boldsymbol{B},-}=-\boldsymbol{I}_{\boldsymbol{A}} \rightarrow m_{B} v_{B}\left\{\left(\frac{L}{r_{B}}\right) \boldsymbol{E}_{\boldsymbol{X}}-\left(\frac{y_{B}}{r_{B}}\right) \boldsymbol{E}_{\boldsymbol{Y}}\right\}-m_{B} v_{i} \boldsymbol{E}_{\boldsymbol{X}}=-\boldsymbol{I}_{\boldsymbol{A}} \\
\cdot \boldsymbol{E}_{\boldsymbol{x}} \rightarrow m_{B}\left(\frac{r_{B}}{\Delta t_{B}}\right)\left(\frac{L}{r_{B}}\right)-m_{B} v_{i}=-I_{A, x} \\
\rightarrow \Delta t_{B}=L\left(v_{i}-\frac{I_{A, x}}{m_{B}}\right)^{-1}=10\left(4-\frac{-2.667}{1}\right)^{-1}=1.5 \mathrm{~s}
\end{gathered}
$$

3. Once Δt_{B} determined, fairly simple to find y_{B}

$$
\begin{aligned}
\cdot \boldsymbol{E}_{x} & \rightarrow-m_{B}\left(\frac{r_{B}^{D}}{\Delta t_{B}}\right)\left(\frac{y_{B}}{r_{B}}\right)=-I_{A, y} \\
& \rightarrow y_{B}=\frac{I_{A, y} \Delta t_{B}}{m_{B}}=\frac{(10)(1.5)}{1}=15 \mathrm{~m}
\end{aligned}
$$

