Mathematics 54.2

Exam 3, 1 May 2013
50 minutes, 50 points

NAME: \qquad ID: \qquad

GSI: \qquad

INSTRUCTIONS:

You must justify your answers, except when instructed otherwise.
All the work for a question should be on the respective sheet.
This is a CLOSED BOOK examination, NO CALCULATORS are allowed.
NO CELL PHONE or EARPHONE use is permitted.
You ARE allowed to bring a notesheet, on one side of letter-size paper.
Please turn in your finished examination to your GSI before leaving the room.

Q1	
Q2	
Q3	
Q4	
Tot	
Ltr	

Question 1. ($15 \mathrm{pts}, 8+2+5$)
(a) Draw a phase portrait of the following linear dynamical system:

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{cc}
1.4 & -.8 \\
1.2 & -1.4
\end{array}\right] \cdot \mathbf{x}
$$

Explain your work, and indicate all significant features.
(b) The components x_{1}, x_{2} represent populations, so are restricted to non-negative values. What best describes this system - cooperation, competition or a predator-prey model? Explain your thinking.
(c) Descibe the eventual outcome for the initial condition $x_{1}(0)=1000, x_{2}(0)=3500$, and for $x_{1}(0)=1000, x_{2}(0)=2750$

Question 2. (12 pts)
Find the Fourier cosine series of the function $f(x)=\sin x$ on the interval $[0, \pi]$.
Remark: You may find use for the trigonometric identities

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta, \quad \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta
$$

Question 3. (8 pts)
Solve the heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

in the region $0 \leq x \leq \pi, t \geq 0$, with initial conditions $u(x, 0)=\sin x(1+\cos x \cos 2 x \cos 4 x)$ and boundary conditions $u(0, t)=u(\pi, t)=0$ at all times $t \geq 0$.
Hint: You might find the formula $\sin \alpha \cos \alpha=\frac{1}{2} \sin 2 \alpha$ useful.

Question 4. (15 pts)
Describe Lagrange's method of solving an inhomogeneous ODE by 'variation of parameters', and illustrate it by finding the general solution to the equation

$$
y^{\prime \prime}(t)-y(t)=\frac{2 e^{t}}{1+e^{t}}
$$

Hint: The substitution $u=e^{t}$ should help with the integrals.

THIS PAGE IS FOR ROUGH WORK (not graded)

