Pret. 1 solution
FOS MI I leg
\& grading solicme. $\left(\begin{array}{|c|}\left(N A^{\prime}\right. \\ \text { marked on Exam }\end{array}\right.$ for no rusuces given
(a)
($\frac{1}{2}$ pt each)
(i) (definition)
(ii) $(F)\left(1\right.$ mole N_{2} occupies $22 . L$ at STP. So, 4 L air will be $\left.\approx \frac{1}{6} \mathrm{~mol}\right)$
(iii) (F) ($\dot{\varphi} \times T^{4}$. If $\left.T \rightarrow 1.01 T, \dot{Q}_{\text {new }}(1.01)^{4} T^{4}=1.04 T^{4}=1.04 \dot{Q}_{c 1 d}\right)$
(iv) (T) (Eint is a state function $\rightarrow \Delta E$ is path independeat)
(v) (I) (If material expands; work is being tune by it.
 At cost. volume: All the what green into sassing T.
\because in same AT, C C_{P} will le $>C_{V}$.
(vi) (F) $C C_{v}=\frac{d}{2} R \quad \& C_{p}=\left(\frac{d}{2}+1\right) R$. Both are greater fer polyatomic
(vii) (T) (well, is is)
(vii) $T,(P)$

Fer $A B \& C D$;

$$
T=\operatorname{coust}(\text { each print) }
$$

$$
\& \Delta S=+v e(A B)
$$

$\& A S=-v e(C D)$ For $B C \& A D$.
$Q=0$ at each point
$\therefore S=$ oust $(\Delta S=0)$

(ix) F
(X) (That's what tim twiner states!)
(b) (lip Each)
(i) $A B C D$ (al l-(E)) Partial credit $\left(\frac{1}{2} \mathrm{p}^{t}\right)$ if at least 2 were arced
(ii) C
(iii) $[D$ and $E] \rightarrow$ full credit $[$ inst $D] \rightarrow$ full credit [just E] $\rightarrow \frac{1}{2}$ pt (not AS imptilant as D)
(iv) (E) $\left(\Delta \ell-l_{0} \times \Delta T=(2.737 \mathrm{~m})\left(12 \times 10^{6}, y\right)\left(50^{\circ} \mathrm{c}\right)=1.6 \mathrm{~m}\right)$
(v) (C) (No name \rightarrow density will change)
(C)
(i)D. $\left[\frac{\square}{x}: \square\right.$

$$
\begin{aligned}
& \text { Sat expansion: } \Delta e=C_{0} \propto\left(T_{\text {max }}-15^{\circ} \mathrm{C}\right) \\
& \text { \& } \frac{\Delta l}{2}=\frac{x}{2} \Rightarrow x=\Delta \ell \\
& =(15)\left(12 \times 10^{6}\right)(24) \\
& \approx 5.2 \times 10^{-3} \mathrm{n}
\end{aligned}
$$

(ii) 0
\# motes in bubble $=$ cost

$$
\begin{gathered}
n=\frac{P_{1} v_{1}}{R_{1}}=\frac{P_{2} V_{2}}{R T_{2}} \\
v_{2}=v_{1} \times \frac{T_{2}}{T_{1}} \times \frac{P_{1}}{P_{2}}=5.8 \mathrm{~cm}^{3}
\end{gathered}
$$

(iii) (C) When Temp. rises. Hg expands more than Fe ($\beta_{\text {ry }}>\beta_{i=e}$). Since masses remain the same, density of tHy goes down more than that of Fe. So. Fe sinks lower.
(iv) (A) (Expansion for nounal materials is isotropic).
$(v) E \quad \Delta l=l_{c} \times \Delta T=(160 \mathrm{~m})\left(142 \times 10^{-6}\left(0^{\circ}\right)^{-1}\right)\left(-150^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}\right)=-0.568 \mathrm{~m}$.
Partial credit given in ExCEPTMOAL cases if writ was shown neatly and only an unimportant part was worn s (this wars RARE)?
d) (tat each)
(i) $\mathbb{E} \quad\left[V_{V m s}=\sqrt{\frac{3 k T}{m}}\right.$ (given on front of $\left.\begin{array}{c}\text { Cram }\end{array}\right)$.
$m=$ mass of particle
$\approx 50 \mathrm{~m} / \mathrm{s}=500 \mathrm{mls}(2$ sig figs $)$. doesnt matter so inn.
OR: $\quad V_{\text {ins }}=\sqrt{\frac{3 R T}{M}} \quad\left(M=\text { molar mass }=28 \mathrm{gms} / \mathrm{mil}=28 \times 10^{-3} \mathrm{~kg}\right)_{\mathrm{mci}}$.
(same cunsucis)
(ii) (B.) $\left[\ln _{u}=\frac{1}{\sqrt{2} 4 \pi r^{2} \frac{N}{v}}, r=\operatorname{radius}!!\frac{N}{V}=\frac{P}{k T}\right.$ (ideal gas lan $)$

$$
\begin{aligned}
& \Rightarrow r^{2}=\frac{K T}{\sqrt{2} \frac{4 \pi P l}{}} \\
& \therefore r=\sqrt{\left[\frac{1.38 \times 10^{-27} \times 273.15}{\sqrt{2} \times 4 \pi \times 101 \times 10^{5} \times 25 \times 10^{-3}}\right]=\sqrt{0.8 \times 10^{-20}} \because 9.2 \times 10^{-11} \mathrm{~m}}
\end{aligned}
$$

(d) Contd.
(iii)(B). $W_{\text {iscthennal }}=\int_{0}^{v_{2}} P d V=\int_{0}^{V_{2}} \frac{n R T}{V} d V=n R T \ln \frac{v_{2}}{V_{1}}=n R T \ln 2 \quad\left(V_{2}=V_{1}\right)$
(iv) (C) Iscthermal, reversille $\Rightarrow \Delta S=\frac{Q}{T}=\underset{\substack{0 \\ \text { (iscthomal } \Delta E=v)}}{T}=\frac{n k T l_{12}}{T}=n R \ell_{42}$.
(v) (E) $\underset{(0, b) .(E) h)}{ } \quad \Delta E=n C_{v} \Delta T$ (any process)
$=0$ (isothermal $\rightarrow \Delta T=0$)
(e) 1pt each
(i) In thermal equilibrium, the temperatinas we ru scume.
(A)
\rightarrow measure of $[$ translational $K \cdot E]$.
$k E_{\text {anci }}=\frac{3}{2} k T \quad$ Any ideal jas.
just x, y, z ninear motion.
$K \cdot F_{\text {total }}=\frac{d}{2} K T<T H 1 S$ depaids in degs. cf thetestom.
(ii) (B). $1^{\text {st }}$ law \rightarrow energy consemafion (not volated)
$3^{\text {rl }}$ law \rightarrow not relevant - He's not trying to roaih atsolute
(iii) (E). Temperaten constant at $e^{\circ} \mathrm{C}=273.15 \mathrm{~K}$.
(iv) (All corect (Google them to check).
(v) E. $1 \mathrm{kial}=4.18 \times 10^{3} \mathrm{~J}$ (font if exam)
$\therefore 1$ cal $=4.18 \mathrm{~J} \rightarrow$ Temp $=3$ rok (large vilume \Rightarrow this doesut)

$$
\Delta S=\frac{4.18 J}{300 K}=k_{B} \ln \left(\frac{V 2_{2} F}{\sqrt{2}}\right)
$$ chaige tump.tymuch)

END
$\Rightarrow \frac{D_{F}}{\Omega_{i}}=\exp \left[\frac{418}{1.33 \times 10^{-23} \times 30 c}\right]=\exp \left[\frac{0.01}{10^{-23}}\right]=\exp \left[10^{2 i}\right]=e^{10^{21}}$
$E N D$
a)
a. Byallowing the blacks to come to a thermaleguilibrium through heat transfer alone, we can setup a calorimetry problem.

$$
\begin{aligned}
& \sum_{i} Q_{i}=0 \\
& Q_{A}+Q_{B}=0 \\
& m_{A} C_{A}\left(T_{F}-T_{A}\right)+m_{B} C_{B}\left(T_{f}-T_{B}\right)=0 \\
& m_{A}=m=m_{B} \\
& C_{A}=C=C_{B} \\
& \partial T_{F}-\left(T_{A}+T_{B}\right)=0 \rightarrow T_{A}=\frac{T_{A}+T_{B}}{2}=\frac{100^{\circ} \mathrm{C}+0^{\circ} \mathrm{C}}{\alpha}=50^{\circ} \mathrm{C}=323 \mathrm{~K}=T_{f}
\end{aligned}
$$

b. Now we allow the blake to come to thermal equilibrium, but by extracting work in the form of a reversible engine. The fact that the engine operates reversibly is critical to this solution.
We know that since entropy is a state function $\Delta s^{\text {cycle }}=0$ of the working substance, and this means that $\left|\Delta S_{\text {in }}\right|=\mid \Delta S_{o u} H$, otherwise there would be a netinureasel decrease in entropy over the course of acucle.
since the engine operates veressibly, we can use the relation

$$
d S=\frac{\hbar Q}{T}
$$

we also find $\Delta S=\int d S$, so

$$
\Delta S=\int \frac{\Delta Q}{T}
$$

using $Q=m c \Delta T$, we then see $d Q=m c d T$
Putting these together, we find

$$
\begin{gathered}
\left|\Delta S_{\text {in }}\right|=\left|\Delta S_{a_{0}+1}\right| \\
\left|\int \frac{\partial Q_{H}}{T_{H}}\right|=\left|\int \frac{\Delta Q_{L}}{T_{L}}\right| \\
\left|T_{K} \int_{T_{A}}^{T_{F}} \frac{d T_{H}}{T_{H}}\right|=\left|n \not C C \int_{T_{B}}^{T_{F}} \frac{d T_{L}}{T_{L}}\right| \\
\left|\ln \left(\frac{T_{F}}{T_{H}}\right)\right|=\left|\ln \left(\frac{T_{F}}{T_{B}}\right)\right|
\end{gathered}
$$

$\underset{\text { exponenticite }}{\text { ext }} \ln \left(\frac{T_{A}}{T_{F}}\right)=\ln \left(\frac{T_{E}}{T_{B}}\right)$

$$
\begin{aligned}
& \quad \frac{T_{A}}{T_{F}}=\frac{T_{F}}{T_{B}} \rightarrow T_{F}^{2}=T_{A} T_{B} \\
& T_{F}=\sqrt{T_{A} T_{B}}
\end{aligned}=\sqrt{(373 K)(273 K)}
$$

(If your don't like the absolute value, then use $\Delta S_{\text {in }}+\Delta$ Sour $^{2}=0$ to chain the Same result)

Common mistakes:

- Many students said $T_{f}=50^{\circ} \mathrm{C}$, but this assumes no work is done. The point of a heat engine is to do positive work:
- many students abs assumed the Carnot efficiency, and some referenced Carnot's theorem. The point of part (d) is to show how this differs from a carnot engine. I will transcribe here Carnot's theorem from Cheater 20 of Giancoli:

2) b. continued...

Quote: "All reversible enyire's operating between the same two constant temperatures T_{H} and T_{L} have the same efficiency. Any irreversible engine operating betwew the same two fixed temperatioses will have an efficiency less then the."
Clearly, in this situation we do not have two constant temperatures, and thus this is not a carnot enyine.A Reversible engine is not necessarily a carnot engine, but it is a requirement to produce the maximum efficiency possible.
C. We know our input heat goes into produximy and waste heat, so

$$
Q_{H}=W_{n e_{+}}+Q_{L}
$$

$\triangle W_{\text {net }}=Q_{H}-Q_{L} \quad$, where

$$
Q_{H}=\left|m c \Delta T_{H}\right|
$$

$$
Q_{L}=\left|m c \Delta T_{L}\right|
$$

$$
\begin{aligned}
& =m c\left[\left(T_{A}-T_{f}\right)-\left(T_{f}-T_{B}\right)\right] \\
W_{\text {net }} & \left.=m c\left(T_{A}+T_{B}-2 T_{f}\right)\right] \\
& =\left(1000 k_{y}\right)\left(\frac{1000 \mathrm{~J}}{k_{0} \mathrm{~J}}\right)(373+273-2[319.1]) \\
W_{\text {net }} & \left.=7.8 \times 10^{6} \frac{\mathrm{~J}}{}\right]
\end{aligned}
$$

Common mistakes:
Several students had the incorrect sign for Q_{H}. Q_{M} must be a positive quantity bectureit is positive heat delivered to the working substance. Q_{L} is also defined with absolute value above because of how ire arrive at $\omega_{\text {net }}=Q_{H}-Q_{L}$:
From the first law: $\Delta E_{i n t}=Q_{i n}-W_{b y}$ iso omer the carse ofacycie

$$
\begin{aligned}
& \Delta E_{\text {int }}^{\text {net }}=Q_{\text {net }}^{\text {net }}-W_{b y}^{\text {net }}, \Delta E_{i n t}^{\text {net }}=0 \text { over a cycle (since Eint is a } \\
& Q_{\text {in }}^{\text {net }}=W_{b y}^{\text {net }} \quad \text { state function) }
\end{aligned}
$$

And we define $Q_{n}^{n e t} \equiv Q_{H}-Q_{L}$, so that $W^{\text {met }}=Q_{H}-Q_{L}$
d. The net thermal efficiency for this engine is

$$
\begin{aligned}
e_{\text {ackait }}= & \frac{W_{\text {ret }}}{Q_{H}}=\frac{m c\left(T_{A}+T_{B}-2 T_{f}\right)}{m c\left(T_{A}-T_{f}\right)}=\text { Frompurt }(c) \\
& e_{\text {ackui }}=\frac{T_{A}+T_{B}-2 T_{f}}{T_{A}-T_{f}} \approx 0.15
\end{aligned}
$$

The efficiency of a carnot engine is

$$
e_{\text {canst }}=1-\frac{T_{B}}{T_{A}} \approx 0.27
$$

we see that $e_{\text {carnot }}>e_{\text {arkal, }}$ as should be the case.
3)
a. The maximum possible coefficient of performance for this refridyexcitor is wine it runs on a carnot-like elder cycle where all the heat enters and leaves the system at constant temperatures, and the other steps are adiabatic.
In yeneral, $\operatorname{cop}=\frac{Q_{L}}{W_{\text {net }}}=\frac{Q_{L}}{Q_{H}-Q_{L}}=\frac{Q_{L}}{Q_{L}\left(\frac{Q_{H}}{Q_{L}}-1\right)}=\frac{1}{\frac{Q_{H}}{Q_{L}}-1}=\operatorname{cop}$
Since entropy is a state function, we know that over the course ofacycle $\Delta S_{i n}=\Delta S_{\text {ant }}$, and since a carnot cycle is a reversible cycle,

$$
d S=\frac{d Q}{T} \rightarrow \Delta S=S d S=\int \frac{d Q}{T}
$$

Ina carnot cycle, all heat enters/ leaves at a constant temperature, so $\Delta S=\frac{1}{T} \int Q Q=\frac{Q}{T}$, which means that
$\Delta S_{\text {in }}=\Delta$ Sort gives the relation

$$
\frac{Q_{H}}{T_{H}}=\frac{Q_{L}}{T_{L}} \rightarrow \frac{Q_{H}}{Q_{L}}=\frac{T_{H}}{T_{L}} \quad \text { (For a carnot Cycle) }
$$

plugging thisin cibore gives

$$
C_{O P}=\frac{1}{T_{H / T_{L}}-1}=\frac{T_{L}}{T_{H}-T_{L}}=C O P_{\max } \approx 8.48
$$

Common mistakes
several students had the symbolic answer correct, but then used either temperatures in ${ }^{\circ} \mathrm{C}$, or added T_{H} and T_{L} in the denominator (I bisect becwse they expected $\operatorname{cop}<1)$
b. First, ae note on notation. mary y students used Q_{L} or $Q_{1}+$ and W in tm. problem instead of $\mathcal{Q}_{L}, \dot{Q}_{H}$ and $P_{e} N_{0}$ ice that th. 3 problem deals with rates, and \dot{Q}_{L}, Q_{H}, and D heme units of $\frac{1}{s}=W$, whereas Q_{Q}, Q_{1}, and W have units of J. The 'dot' typically signifies a quantity per unit time.

Here we want to find \dot{Q}_{L}, and we know the CoP, so we use the relation $\operatorname{CoP}=\frac{Q_{L}}{W}=\frac{Q_{L}}{P}$, where $\quad \operatorname{CoP}=F\left(\frac{T_{L}}{T_{H+}-T_{L}}\right)$, so we write

$$
\begin{aligned}
& \dot{Q}_{L}=P \operatorname{COP}=P F\left(\frac{T_{L}}{T_{H}-T_{L}}\right) \\
& \dot{Q}_{L}=\left(\frac{3}{4} h P\right)\left(\frac{746 \$ 5}{1 h P}\right)(0.43)(8.48) \approx 2040 \mathrm{~s} / \mathrm{s}=\dot{Q}_{L}
\end{aligned}
$$

3) C. Now we want to find \dot{Q}_{H}

$$
\begin{aligned}
& Q_{H}=W+Q_{L}, S 0 \\
& \dot{Q}_{H}=P+\dot{Q}_{L}=P\left(1+F\left[\frac{T_{L}}{T_{H}-T_{L}}\right]\right)=\dot{Q_{H}}
\end{aligned}
$$

Another common solution was to use

$$
\operatorname{COP}=\frac{\dot{Q_{L}}}{\rho} \rightarrow P=\frac{\dot{Q}_{L}}{\operatorname{CoP}} \quad \text {, where } \operatorname{COP}=F\left(\frac{T_{L}}{T_{H}-T_{L}}\right)
$$

$$
\dot{Q}_{M}-\dot{Q}_{L}=\frac{\dot{Q}_{L}}{\operatorname{cop}}
$$

$$
\dot{Q}_{+1}=\dot{Q}_{1}\left(1+\frac{1}{\operatorname{cop}}\right)
$$

$$
=P \operatorname{cop}\left(1+\frac{1}{\cos }\right)
$$

$$
\dot{Q}_{H}=P\left(1+\operatorname{co}^{\circ}\right)
$$

Anyoftwese work, and they all give

$$
\dot{Q}_{H}=2600 J_{i S}
$$

d. We know from earlier, that
$\dot{Q}_{L}=P f\left(\frac{T_{L}}{T_{H}-T_{L}}\right)$, and from calorimetry that
$Q=m_{w} C_{w} \Delta T \Rightarrow L_{f} m_{\omega}$, where $\Delta T<0$
Interns of heat entering the ice, $\dot{Q}_{L}<0$ aspell, so derminus signs cancel, and the time required to freeze the ice (Δt) is

$$
\Delta t=\frac{m_{\omega}\left(C_{\omega}|\Delta T|+L_{f}\right)}{P_{f}\left(\frac{T_{L}}{T_{H}-T_{L}}\right)} \approx 845 s \approx 14 \text { minutes }=\Delta t
$$

Common mistakes:
Several students had the signs of the heat leaving the water for the coding process and the freezing process opposite. In both instances, the heat flows in the same direction and so they must have the same sign.
e. Find Δ Sir, $^{2} \Delta$ Sice/water, $\Delta S_{\text {um in }}^{m i n}$

DSair: We assume the heat exhausted into the air is mot enough to arise its temperature, so from() from (d)

$$
\begin{aligned}
& \Delta S_{\text {air }}=\frac{Q_{H}}{T_{H}} \text {, where } Q_{H}=\dot{Q}_{H} \Delta t \rightarrow \Delta S_{\text {air }}=\frac{\dot{Q}_{H} \Delta t}{T_{H}}=7472 \frac{1}{k}=\Delta S_{\text {air }} \\
& \Delta S_{\text {.ce/mater }}=\frac{Q_{\text {freeze }}}{T_{\text {free }}}+\int_{T_{i}}^{T_{f}} \frac{m_{\omega} C_{\omega} d T}{T}=-\frac{L_{F} M_{\omega}}{273 k}+m_{\omega} C_{\omega} \ln \left(\frac{273 k}{T_{\omega}}\right)=\Delta S_{\text {mir/water }}
\end{aligned}
$$

3) e. continued...

$$
\begin{aligned}
& \Delta S_{\text {uni }}^{m i n}=\Delta S_{\text {air }}+\Delta S_{\text {iceluoter }} \\
& \Delta S_{\text {uni }}^{m i n}=1228 \mathrm{~J}_{\text {Mk }}
\end{aligned}
$$

Common mistakes:
Again, people used opposite signs for the entropy Cinenye of the cooling and freezing processes of the ireluater. When water freezes, it becomes less entropic, and the sane is the when water cools.
F. Inorder for the refrigerator to work at its maximum possible coefficient of performance, it must operate on a reversible cycle.
inerefore, $\Delta S_{\text {univ }}^{\text {cycle }}=0$
Todeiermine $\frac{t_{i d e a l}}{t_{\text {actual }}}$, we realize

$$
\begin{aligned}
& \text { CoP }_{\text {max }}=\frac{\ddot{Q}_{L}^{\text {ideal }}}{P}=\frac{T_{L}}{T_{H}-T_{L}} \\
& \dot{Q}_{L}^{\text {deal }}=P\left(\frac{T_{L}}{T_{H}-T_{L}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { So that t.deal } \approx(0.43)(14 \mathrm{~min}) \\
& \approx 6 \text { minutes }
\end{aligned}
$$

Common mistakes:

- Some students found $\frac{\text { tideal }}{\text { tactual }}=\frac{1}{F}$. Remember. if the traci refrigerator operates more efficiently, it will draw more heat out for the same work Put .n, so the ideal time will be shorter.
- $\Delta S_{\text {univ }}^{\text {curie }}=0$ because the engine operates on acycle, and entropy is u state function. $\Delta S^{\text {icicle }}=0$ is always the for the working substance, but $\Delta S_{\text {univ }}=\Delta S_{\text {whathity }}+\Delta S_{\text {enverame }}$ and Δ Senvement $=-\Delta S_{\text {working }}^{\text {substance }}$ is only the for reversible processes, this $\Delta S_{\text {unix }}=0$ only for reversible processes.

Physics 7B Fall 2008: Lecture 3 Midterm 1, Prob 4

Data

$$
\begin{array}{r}
A=25 \mathrm{~cm}^{2} \quad T_{h}=100^{\circ} \mathrm{C} \quad T_{c}=0^{\circ} \mathrm{C} \\
L_{C u}=26.0 \mathrm{~cm} \quad L_{A l}=33.0 \mathrm{~cm} \\
k_{C u}=400 \frac{W}{m \cdot{ }^{\circ} \mathrm{C}} \quad k_{A l}=240 \frac{\mathrm{~W}}{\mathrm{~m} \cdot{ }^{\circ} \mathrm{C}}
\end{array}
$$

(a) Interface temperature

The heat flows through each section must be equal to each other and to the overall heat flow through the entire composite bar at steady state. If they aren't equal, there would be a net heat dump or removal at the interface, which would raise or lower the temperature there (which wouldn't be steady state). Let the temperature at the interface be T . Then, the equations for heat conduction become:

$$
\begin{align*}
\frac{d Q}{d t} \|_{C u} & =\frac{d Q}{d t} \|_{A l} \\
\frac{k_{C u} A\left(T_{h}-T\right)}{L_{C u}} & =\frac{k_{A l} A\left(T-T_{c}\right)}{L_{A l}} \tag{1}\\
\frac{k_{C u}}{L_{C u}} T_{h}+\frac{k_{A l}}{L_{A l}} T_{c} & =T\left(\frac{k_{C u}}{L_{C u}}+\frac{k_{A l}}{L_{A l}}\right)
\end{align*}
$$

Finally,

$$
\begin{equation*}
T=\frac{\frac{k_{C u}}{L_{C u}} T_{h}+\frac{k_{A l}}{L_{A l}} T_{C}}{\left(\frac{k_{C u}}{L_{C u}}+\frac{k_{A l}}{L_{A l}}\right)} \tag{2}
\end{equation*}
$$

Numerically,

$$
\begin{gather*}
T=\frac{\frac{400 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}}{0.26 \mathrm{~m}} 100^{\circ} \mathrm{C}+\frac{240 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}}{0.33 \mathrm{~m}} 0^{\circ} \mathrm{C}}{\left(\frac{400 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}}{0.26 \mathrm{~m}}+\frac{240 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}}{0.33 \mathrm{~m}}\right)} \\
T=68^{\circ} \mathrm{C}=3.4 \times 10^{2} \mathrm{~K} \tag{3}
\end{gather*}
$$

(2 sig figs)

Grading scheme:
1 pt : Showing that you know WHY the two heat flows are equal (steady state), SOMEWHERE in the writeup.
1 pt : Correct order of the 2 temperature differences
1 pt : final symbolic answer
2pt: final numeric answer. Work not necessary (but useful for partial credit here).
(b) For $T_{\text {interface }}=50^{\circ} \mathrm{C}$

We can directly rearrange eq. 1 to get $L_{A l}$:

$$
\begin{equation*}
L_{A l}=\frac{k_{A l}}{k_{C u}} \frac{\left(T-T_{c}\right)}{\left(T_{h}-T\right)} L_{C u} \tag{4}
\end{equation*}
$$

Numerically, for the interface temperature $T=50^{\circ} \mathrm{C}$:

$$
\begin{equation*}
L_{A l}=\frac{240 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}}{400 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C} \frac{\left(50^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}\right)}{\left(100^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}\right)} 26 \mathrm{~cm}=15.6 \mathrm{~cm} \approx 16 \mathrm{~cm},} \tag{5}
\end{equation*}
$$

(2 sig figs)
Grading scheme:
1 pt : Correct order of the 2 temperature differences
2 pt : final symbolic answer. Partial credit given depending on how much numerical work was shown. 2 pt : final numeric answer. Work not necessary (but useful for partial credit here).

(c) Heat flow along the original rods

Again, we can use the original eq. 1 directly (any one of the 2 expressions is fine):

$$
\begin{equation*}
\frac{d Q}{d t}\left\|_{A l}=\frac{d Q}{d t}\right\|_{C u}=\frac{k_{C u} A\left(T_{h}-T\right)}{L_{C u}} \tag{6}
\end{equation*}
$$

Numerically,

$$
\begin{equation*}
\frac{d Q}{d t}\left\|_{A l}=\frac{d Q}{d t}\right\|_{C u}=\frac{\left(400 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)\left(25 \times 10^{-4} \mathrm{~m}^{2}\right)\left(100^{\circ} \mathrm{C}-67.9^{\circ} \mathrm{C}\right)}{0.26 \mathrm{~m}}=123.5 \mathrm{~W} \approx 0.12 \mathrm{~kW} \tag{7}
\end{equation*}
$$

(2 sig figs)

Grading scheme:

3pt: final symbolic answer (any one expression, with proper quantities - NOT generic T's, L's, etc.) Again, a LOT of explicit numeric plugging-in gave you some partial credit here.
2pt: final numeric answer. Work not necessary (but useful for partial credit here). Missing/incorrect units are penalized.

(d) Rate of entropy production in the process

At steady state, the rod itself is merely acting as a conduit for the heat flow and absorbs no net heat. The heat flow calculated in (c) is being lost $\left(\dot{Q_{h}}\right)$ by the hot reservoir (maintained at constant temperature T_{h}) and is gained $\left(\dot{Q}_{c}\right)$ by the cold reservoir maintained at constant temperature $\left(T_{c}\right)$. So, $\dot{Q}_{h}=-|\dot{Q}|$ and $\dot{Q}_{c}=|\dot{Q}|$, where $|\dot{Q}|$ is the absolute value of the heat flow from (c).

The total rate of entropy change for the entire system is then:

$$
\begin{aligned}
\dot{S} & =\dot{S}_{h}+S_{\text {rods }}+\dot{S_{c}} \\
& =\frac{\dot{Q_{h}}}{T_{h}}+0+\frac{\dot{Q_{c}}}{T_{c}}
\end{aligned}
$$

So,

$$
\begin{equation*}
\dot{(} S)=|\dot{Q}|\left(\frac{1}{T_{c}}-\frac{1}{T_{h}}\right) \tag{8}
\end{equation*}
$$

Numerically,

$$
\begin{equation*}
\dot{(} S)=0.12 \times 10^{3} J / s\left(\frac{1}{273.15 K}-\frac{1}{373.15 K}\right) \approx 0.12 \frac{J / K}{s} \tag{9}
\end{equation*}
$$

Grading scheme:
2pt: Saying SOMETHING about why the rods don't contribute to the entropy production and justifying the signs used for the heat flows.
1 pt : final symbolic answer. Credit given only if symbols are defined/make sense.
2pt: final numeric answer. Work not necessary (but useful for partial credit here). Again, units are important.

(e) Scaling questions

If all linear dimensions of the rods are increased by a factor of 2 , the cross-section area would go up by a factor of 4 and the length would go up by a factor of 2 . There is an additional factor that must be considered (this can be done in two equally correct ways):

1. If you use the heat flow equation (eq. 6) derived in part (c) to analyse this question, you have to comment on why the interface temperature (T) doesn't change when you change ALL the linear dimensions. Just concluding this (by inspection) from your symbolic answer for part (a) (eq. 2) would be sufficient (notice that if both the Cu and Al lengths change by the SAME factor there, T is unchanged).
2. An equivalent way to solve the entire problem (but NO one did it this way) was to calculate the effective R -value of the composite rod and write the heat flow equation in terms of this effective R -value. Then of course, you would have had to show why this effective R-value didn't change with a scaling of all the dimensions.

With these 3 ingredients, we see that the heat flow would INCREASE by a factor of 2 overall.

[^0]
Common mistakes

If you have any of these, chances are that I agonized over your grade to begin with so it most likely won't change. Also, any time you see grades crossed out/changed on your exam, I spent a LOT of time on those, so the chances that there was a grading mistake are pretty slim. Also, remember that where partial credit is concerned, I judged your understanding of the problem as a whole and rewarded good explanations.
(a) No justification for equating heat flows. Symbolic work not done/no symbolic answer. Incorrect numeric answer (bad units, wrong substitution, etc.)
(b) No symbolic answer given. Using numerical heat flow from part (a). Claiming that the total length stays the same (no reason for this, but a lot of people did this).
(c) Not writing symbolic answers. Forgetting to convert the area and/or length to SI units/converting incorrectly. Not writing units on your answers (general mistake for all parts).
(d) Very few got this correct. The most common mistake was writing a strange integral and obtaining a natural \log of temperatures. This received no credit. Only a handful got full credit on this one.
(e) Only 1 person got full credit. Most common mistake was forgetting about $T_{\text {interface }}$ (described in the solution). Second most common mistake was forgetting that area would also change. Partial credit was given to wrong answers only if some explanation was offered.
(d) [5 points] Water vapor and CO_{2} added to the atmosphere increase the emissivity. CO_{2} increases the emissivity in the infrared (where the Earth's thermal radiation peaks) according to $\epsilon C O_{2}=A+B * \ln (C / C o)$, where C is the increased atmospheric density of CO_{2} compared to the pre-driving density of CO_{2} called $C o$. For this problem assume that $A=0.05$, $B=0.04$, and $C o=300 \mathrm{ppmv}$ (parts per million by volume) from pre-1960. It is 383 ppmv now. How much has the infrared emissivity of the atmosphere increased due to the CO_{2} increase between 1960 and now? What would be the corresponding temperature rise for the Earth?

$$
\begin{aligned}
& \epsilon C O_{2}=A+B * \ln (C / C o)=0.05+0.04 * \ln (383 / 300) \\
& \Delta \epsilon=0.04 * \ln (383 / 300)=0.00977 \text { about } 1 \% \\
& \text { The change in temperature } \epsilon_{o} T^{4}=\left(\epsilon_{0}-\Delta \epsilon\right)(T+\delta T)^{4} \\
& \delta T \sim 0.75 C
\end{aligned}
$$

(e) [2 points] The Greenhouse Effect is more difficult to calculate when including water vapor because there is positive feedback. A temperature rise of the ground, and especially of oceans and lakes causes water vapor in the atmosphere to increase. (So also is reflecting cloud cover.) For a $1^{\circ} \mathrm{C}$ rise from $14^{\circ} \mathrm{C}$ by how much would the water vapor fraction rise? The saturated vapor pressure of water at $14^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$ are about $1.6 \times 10^{3} \mathrm{~Pa}\left(=\mathrm{N} / \mathrm{m}^{2}\right)$ and $1.71 \times 10^{3} \mathrm{~Pa}\left(=\mathrm{N} / \mathrm{m}^{2}\right)$ respectively and an average relative humidity for the earth is about 50%. What would be fractional content of the atmosphere in water vapor by volume?
$0.5 \times 1.17 \times 10^{3} / 1.013 \times 10^{5}=0.0058$
(f) [5 points] Why does the water vapor partial pressure rise increasingly rapidly with temperature? See attached figure and provide a rough physical argument/reason and an approximate formula.

Figure 3: Water Vapor Partial Pressure Versus Temperature.

Boltzmann factor $e^{-\Delta E / k T}=153843000000 * \operatorname{EXP}(-5284 /(\mathrm{A} 12+273.15))$ fit by making a semilog. $f_{\mathrm{H}_{2} \mathrm{O}}=A \exp -B / T$ so that $\ln \left(f_{\mathrm{H}_{2} \mathrm{O}}\right)=\ln (A)-B / T$ pick two values and solve for $\ln (\mathrm{A})$ and B .
(g) [3 points] At the same temperature, a column of dry air will be denser or heavier than a column of air containing any water vapor. Thus, any volume of dry air will sink if placed in a larger volume of moist air. Also, a volume of moist air will rise or be buoyant if placed in a larger region of dry air. As the temperature rises the proportion water vapor in the air increases, its buoyancy will become larger. This increase in buoyancy can have a signicant atmospheric impact, giving rise to powerful, moisture rich, upward air currents when the air temperature and sea temperature reaches $25^{\circ} \mathrm{C}$ or above. This phenomenon provides a significant motivating force for cyclonic and anticyclonic weather systems (tornados and hurricanes).

What is the difference in density at $15^{\circ} \mathrm{C}\left(1.71 \times 10^{3} \mathrm{~Pa}\right)$ between dry and saturated air? How about at $25^{\circ} \mathrm{C}(3170 \mathrm{~Pa})$, what is the difference in density? What is the difference in pressure in the two cases? What is the expected wind speed?

Solution: Water vapor content is at $15^{\circ} \mathrm{C}$ is $1.71 \times 10^{3} \mathrm{~Pa}$ and at $25^{\circ} \mathrm{C}$ is $(3170 \mathrm{~Pa})$. One standard atmosphere is 1.013×10^{5} So the fractional differences is
$f\left(T=15^{\circ} C\right)=1.71 \times 10^{3} / 1.013 \times 10^{5}=1.688 \times 10^{-2}$ and
$f\left(T=25^{\circ} C\right)=3.17 \times 10^{3} / 1.013 \times 10^{5}=3.13 \times 10^{-2}$.
The mean molecular weight of air is $M W=0.8 \times 28+0.2 \times 32=28.8$ The molecular weight of the water vapor is 18 . Thus the displaced difference is 10.8 in molecular weight or fraction $=10.8 / 28.8=0.375$.

The difference in density is
$\Delta \rho\left(T=15^{\circ} \mathrm{C}\right)=f\left(T=15^{\circ} \mathrm{C}\right) \times 0.375 \times \rho_{0}=1.688 \times 10^{-2} \times 0.375 \times 1 \mathrm{~kg} / \mathrm{m}^{3}=0.00633$
$\Delta \rho\left(T=25^{\circ} \mathrm{C}\right)=f\left(T=25^{\circ} \mathrm{C}\right) \times 0.375 \times \rho_{0}=3.13 \times 10^{-2} \times 0.375 \times 1 \mathrm{~kg} / \mathrm{m}^{3}=0.0117$
The difference in pressure is then
$\Delta P\left(T=15^{\circ} C\right)=1710 \times 0.375 \mathrm{~Pa}=641 \mathrm{~Pa}$
$\Delta P\left(T=25^{\circ} C\right)=3170 \times 0.375 \mathrm{~Pa}=1190 \mathrm{~Pa}$
Use Bernoulli equation (energy conservation changed to energy density conservation)
$\mathrm{KE}+\mathrm{PE}=$ constant $\rightarrow \mathrm{KE} /$ Volume $+\mathrm{PE} /$ Volume $=$ constant
$\frac{1}{2} \rho v^{2}+\Delta P+P_{0}=P_{0}=$ constant
$v=\sqrt{2 \Delta P / \rho}=\sqrt{2 \times 641 P a / 1 \mathrm{~kg} / \mathrm{m}^{3}}=36 \mathrm{~m} / \mathrm{s}=128 \mathrm{~km} / \mathrm{hr}=77 \mathrm{mi} / \mathrm{hr}$
$v=\sqrt{2 \Delta P / \rho}=\sqrt{2 \times 1190 P a / 1 \mathrm{~kg} / \mathrm{m}^{3}}=49 \mathrm{~m} / \mathrm{s}=176 \mathrm{~km} / \mathrm{hr}=106 \mathrm{mi} / \mathrm{hr}$

[^0]: Grading scheme:
 1 pt : Showing that the effective R-value or the interface temperature do NOT change (read above).
 1pt: Knowing that $L \rightarrow 2 L$
 1pt: Seeing that $A \rightarrow 4 A$
 2pt: Final conclusion - heat flow increases by factor of 2 .

