Prot-1 Solution

$$\begin{array}{c} (f) \left(f \right) \left($$

(d) toth
(iii) (b). Walkand =
$$\int PdV = \int nRT I dV = nRT In 2 (V = V)$$

(iv) (c) Isothermal rewisible $\Rightarrow \Delta S = \frac{G}{T} = \frac{\Delta f + W}{\sigma T} = nRT In 2 (V = V)$
(v) (c) Isothermal rewisible $\Rightarrow \Delta S = \frac{G}{T} = \frac{\Delta f + W}{\sigma T} = nRIh_2 = nRh_2$.
(v) (c) $\Delta E = nC_v\Delta T (any process)$
 $= 0 (sothermal - \Delta T = 0)$
(c) $\int n thermal equilibrium, the temperature constance $K = \frac{1}{2}$
(i) $\int n thermal equilibrium, the temperature constance $K = \frac{1}{2}$
(ii) $\int n thermal equilibrium, the temperature constance $K = \frac{1}{2}$
 $K = \frac{3}{2} KT$ Any ideal jet.
(i) $\int n thermal equilibrium of $K = \frac{3}{2} KT$ Any ideal jet.
(iii) (b) $\int n thermal equilibrium of $K = \frac{3}{2} KT$ Any ideal jet.
(iv) $\int n thermal equilibrium of $K = \frac{3}{2} KT$ Any ideal jet.
(iv) (c) $\int n thermal equilibrium of $K = \frac{3}{2} KT$ Any ideal jet.
(iv) (c) $\int n tar = chergy tensewation (net violated) of therefore $K = \frac{1}{2} \frac{1}{273 + 15} KZ$.
(iv) (c) $\int n tar = \frac{1}{2} \frac{1}{3} \frac{1}{15} \frac{1}{15}$$$$$$$$$

- 2)
- a. By allowing the blocks to come to a thermal equilibrium through heat transfer alore, we can set up a cabrimetry problem.

$$\sum_{i} Q_{i} = 0$$

$$Q_{A} + Q_{B} = 0$$

$$M_{A}(A(T_{F}-T_{A}) + m_{B}C_{B}(T_{F}-T_{B}) = 0$$

$$m_{A} = m = m_{B}$$

$$C_{A} = C = c_{B}$$

$$\partial T_{F} - (T_{A}+T_{B}) = 0 \quad -) \quad T_{F} = \frac{T_{A}+T_{B}}{\partial} = \frac{100^{\circ}C+0^{\circ}C}{\partial} = 50^{\circ}C = \frac{333K}{33K} = T_{F}$$

b. Now we allow the blacks to come to thermal equilibrium, but by extracting work in the form of a reversible engine. The fact that the engine operates reversibly is critical to this solution.

We know that since any entropy is a state function Asorche = 0 of the working substance, and this nears that ISSIN= ASouth, otherwise there would be a netinineuse decrease in entropy over the course of acycle.

Since the onlyine operates refersibly, we can use the relation

$$dS = \frac{dQ}{T}$$
Use also Find $\Delta S = \int dS_{1}$ so

$$\Delta S = \int \frac{dQ}{T}$$
Using $Q = mC\Delta T$, we then see $dQ = mCdT$
Ruthing these together, we find

$$|\Delta S_{1n}| = |\Delta S_{00T}| \qquad (if now don't like the absolute value e, then use
$$|\int \frac{dQ_{11}}{T_{11}}| = |\int \frac{dQ_{1}}{T_{12}}| \qquad \Delta S_{11} + \Delta S_{01} = 0 + 0 \text{ obtain the same result})$$

$$|\int \frac{dQ_{11}}{T_{11}}| = |M(K_{T_{10}})| \qquad \Delta S_{11} + \Delta S_{01} = 0 + 0 \text{ obtain the same result})$$

$$|\int \frac{dQ_{11}}{T_{11}}| = |M(K_{T_{10}})| \qquad \Delta S_{11} + \Delta S_{01} = 0 + 0 \text{ obtain the same result})$$

$$|\int \frac{dQ_{11}}{T_{11}}| = |M(K_{T_{10}})| \qquad \Delta S_{11} + \Delta S_{01} = 0 + 0 \text{ obtain the same result})$$

$$|\int \frac{dQ_{11}}{T_{11}}| = |M(K_{T_{10}})| \qquad \Delta S_{11} + \Delta S_{01} = 0 + 0 \text{ obtain the same result})$$

$$|\int \frac{dQ_{11}}{T_{11}}| = |M(K_{T_{10}})| \qquad \Delta S_{11} + \Delta S_{01} = 0 + 0 \text{ obtain the same result})$$

$$|\int \frac{dQ_{11}}{T_{10}}| = |M(K_{T_{10}})| \qquad \Delta S_{11} = 0 + 0 \text{ obtain the same result})$$

$$|\int \frac{dQ_{11}}{T_{10}}| = |M(K_{T_{10}})| \qquad \Delta S_{11} = 0 + 0 \text{ obtain the same result})$$

$$|\int \frac{dQ_{11}}{T_{10}}| = |M(K_{T_{10}})| \qquad \Delta S_{11} = 0 + 0 \text{ obtain the same result})$$

$$|\int \frac{dQ_{11}}{T_{10}}| = |M(K_{T_{10}})| \qquad \Delta S_{11} = 0 + 0 \text{ obtain the same result})$$$$

Common mistakes:

- · many students said TF = 50°C, but this assumes no work is done. The point of a heat onlying is to do positive work!
- · Muny students also assumed the Gunot efficiency, and some referenced Caunot's theorem. The point of part (d) is to show how this differs from a Carnot engine. I Will transcribe here Carnot's theorem From Chepter 20 of Giancoli;

a) b. continued...

Quote: "All reversible engines operating between the same two constant temperatures TH and The have the same efficiency. Any irreversible engine operating betwee the same two fixed temperatures to will have an efficiency less than this."

(learly, in this situation we do not have two constant temperatures, and thus this is not a carnot engine. A Reversible engine is not necessarily a Carnot engine, but it is a requirement to produce the Maximum efficiency possible.

C. We know our input heat goes into producing the and waste heat, so

$$Q_{H} = W_{net} + Q_{L}$$

 $W_{net} = Q_{H} - Q_{L}$, where $Q_{L} = |MC \Delta T_{L}|$
 $= MC[(TA - TE) - (TE - TE)]$
 $W_{net} = MC(TA + TE - ATE)]$
 $= (1000 \text{ ky})(1000 \text{ J})(373+373-2(319.1))$
 $W_{net} = 7.8 \times 10^{6} \text{ J}$

Common mistakes:

Several students had the incorrect sign for QH. QH must be a positive grantity because it is positive heat delivered to the working substance. QL is also defined with absolute value above because of how we arrive at Whet = QH-QL:

trom the first law:
$$\Delta Eint = Qin - Wby 150$$
 over the course of a cycle
 $\Delta E_{int}^{net} = Q_{in}^{net} - Wby$, $\Delta E_{int}^{net} = 0$ over a cycle (since Eint is a
 $Q_{in}^{net} = W_{by}^{net}$
that we down another over a cycle (since Eint is a
 $Q_{in}^{net} = W_{by}^{net}$

And we define Qnet = QH-QL, So that Whet = QH-QL

d. The net thermal efficiency for this engine is

$$e_{achus} = \frac{W_{net}}{Q_{H}} = \frac{mc(T_{A}+T_{B}-dT_{F})}{mc(T_{A}-T_{F})} \quad \text{from purt(c)}$$

$$e_{achus} = \frac{T_{A}+T_{B}-dT_{F}}{T_{A}-T_{F}} \approx 0.15$$

The efficiency of a carnot ensure is $\frac{1-\frac{T_0}{T_A}}{\frac{T_0}{T_A}} = \frac{1-\frac{T_0}{T_A}}{\frac{T_0}{T_A}} = \frac{1-\frac{T_0}{T_A}}{\frac{T_0}{T_A}}$

we see that Count > Carbon , as should be the case.

the system at constant temperatures, and the other steps are adiabatic.

In general,
$$COP = \frac{Q_L}{W_{net}} = \frac{Q_L}{Q_H - Q_L} = \frac{Q_L}{Q_L(\frac{Q_H}{W_L} - 1)} = \frac{1}{\frac{Q_H}{Q_L} - 1} = COP$$

Since entropy is a state function, we know that oner the course of a cycle $\Delta S_{in} = \Delta S_{a,t}$, and since a carnot cycle is a reversible cycle, $dS = \frac{dQ}{T} \Rightarrow \Delta S = SdS = \int \frac{dQ}{T}$

In a carnot cycle, all heat enters leaves at a constant temperature, so

$$\Delta S = \frac{1}{T} \int dQ = \frac{Q}{T}, \text{ which means that}$$

$$\Delta S_{in} = \Delta S_{aut} \quad \text{gives the relation}$$

$$\frac{Q_{H}}{T_{H}} = \frac{Q_{L}}{T_{L}} \rightarrow \frac{Q_{H}}{Q_{L}} = \frac{T_{H}}{T_{L}} \quad (\text{For a carnot Cycle})$$

plugging this in clone gives

$$(op = \frac{1}{TW_{T_{L}} - 1} = \frac{T_{L}}{T_{H} - T_{L}} = COP_{max} \approx \boxed{8.48}$$

Common mistakes

3)

Serviced students had the symbolic answer correct, but then used either temperatures in °C, or added TH and TL in the denominator (Itsuspect because they expected (OP<1)

b. First, and note on notation. Many students used QL or QH and W inthis problem instead OF QL, QH and P. Notice that this problem deals with racks, and QL, QH, and P have units OF $\frac{1}{5} = W$, whereas QL, QH, and W have units OF J. The idot' typically signifies a guantity per unit time.

Here we want to Find QL, and we know the COP, so we use the relation

 $coP = \frac{Q_L}{W} = \frac{\ddot{Q}_L}{P}, where coP = F\left(\frac{T_L}{T_H - T_L}\right)$ so we write

$$\dot{Q}_{L} = PCOP = PF(\frac{TL}{TH-TL}) \\ \dot{Q}_{L} = (\frac{3}{4}hP)(\frac{746}{1}k)(0.43)(8.48) \approx 2040 \frac{1}{5} = \dot{Q}_{L}$$

3) C Now we want to find
$$\hat{Q}_{H}$$

 $\hat{Q}_{H} = W + Q_{L}$, so
 $\hat{Q}_{H} = P + \hat{Q}_{L} = \frac{P(1 + F(\frac{T_{L}}{T_{H} - T_{L}})) = \hat{Q}_{H}}{Q_{H} = P + \hat{Q}_{L}} = \frac{P(1 + F(\frac{T_{L}}{T_{H} - T_{L}})) = \hat{Q}_{H}}{Q_{H} = D + \hat{Q}_{L}}$
Another common solution was to use
 $\hat{Q}_{H} = \hat{Q} + \hat{Q}_{L} = \frac{P(1 + F(\frac{T_{L}}{T_{H} - T_{L}})) = \hat{Q}_{H}}{Q_{H} = 0}$
Another common solution was to use
 $\hat{Q}_{H} = \hat{Q}_{L} = \hat{Q}_{L}$
 $\hat{Q}_{H} - \hat{Q}_{L} = \hat{Q}_{L}$
 $\hat{Q}_{L} = P(f(T_{L} - T_{L}))$ and from Calorinetry that
 $\hat{Q}_{L} = P(F(T_{L} - T_{L}))$ and from Calorinetry that
 $\hat{Q}_{L} = M_{U}(\hat{Q}_{L}) = 1 + \hat{Q}_{L}$
 $\hat{Q}_{L} = M_{U}(\hat{Q}_{L}) = 1 + \hat{Q}_{L}$
 $\hat{Q}_{L} = M_{U}(\hat{Q}_{L}) = 1 + \hat{Q}_{L}$
 $\hat{Q}_{L} = \frac{\hat{Q}_{L}}{\hat{Q}_{L}}$
 $\hat{Q}_{L} = \frac$

Several Students had the signs of the heat leaving the water for the cooling process and the freezing process opposite. In both instances, the heat flows in the same direction and so they must have the same sign.

e. Find
$$\Delta S_{u,r}$$
, $\Delta S_{ue/waker}$, ΔS_{un}^{min}
 ΔS_{uir} : We assume the heat exhausted into the air is not enough to exise its
temperature, so from(d)
 $\Delta S_{uir} = \frac{Q_H}{T_H}$, where $Q_H = Q_H \Delta t$ $\rightarrow \Delta S_{uir} = \frac{Q_H \Delta t}{T_H} = \frac{7472 \pm \Delta S_{uir}}{K}$
 $\Delta S_{ue/water} = \frac{Q_{Freeze}}{T_{Freeze}} + \int_{T_i}^{T_i} \frac{m_w C_w dT}{T} = \frac{-L_F M_w}{273K} + m_w C_w ln(\frac{273K}{T_w}) = \Delta S_{uir/water}$
 $\Delta S_{ue/water} = \frac{Q_{Freeze}}{T_{Fi}} + \int_{T_i}^{T_i} \frac{m_w C_w dT}{T} = \frac{-L_F M_w}{273K} + m_w C_w ln(\frac{273K}{T_w}) = \Delta S_{uir/water}$
 $\Delta S_{ue/water} = \frac{(-(333 KJ))}{273K} - \frac{4.18 KJ ln(\frac{241K}{273K})}{K_3 K}](4.2 Ky) = \frac{-G_2444 J/K}{2} = \Delta S_{uir/water}$

3) C. continued...

$$\Delta S_{uni}^{min} = \Delta S_{uir} + \Delta S_{ice/water}$$

 $\Delta S_{uni}^{min} = 1228 J/K$

Common mistakes:

Again, people used opposite signs for the entropy Chunge of the colding and Freezing processes of the icelwater. I when water freezes, it becomes less entropic, and the same is the when water cools.

F. Inorder for the refrighterator to work at its maximum possible coefficient OF performance, it must operate on a reversible circle. Therefore, $\Delta Suniv = 0$ Tochetermine <u>fident</u>, we realize factual $(OP_{max} = \frac{Q_L}{Q_L}) = \frac{T_L}{T_H - T_L}$ $\vec{Q}_L^{ideal} = P(\frac{T_L}{T_H - T_L})$ fident = $\frac{Q}{Q_L}$ ideal = $\frac{O_L}{Q_L}$ ideal = $\frac{P(T_L)}{P(T_H - T_L)} = \frac{F = f_L deal}{factual} = \frac{O_L + G_L}{G_L}$ form(b) So that fideal = $(O_L + G_L)(14 mm)$ = G mmutes

Common mistakes!

- · Some students found <u>Eideal</u> = <u>I</u>. Remember if the effect refrigerator operates More efficiently, it will drow more heat out for the same work put in, so the ideal time will be shorter.
- $\Delta S_{univ} = 0$ because the engine operates on a cycle, and entropy is a state function. $\Delta S_{univ} = 0$ is always the for the working substance, but $\Delta S_{univ} = \Delta S_{univ} + \Delta S_{univ}$ and $\Delta S_{univ} = -\Delta S_{upprking}$ is only the for remarsible processes, thus $\Delta S_{univ} = 0$ only for reversible processes.

Physics 7B Fall 2008: Lecture 3 Midterm 1, Prob 4

Data

$$A = 25cm^2 \quad T_h = 100^{\circ}C \quad T_c = 0^{\circ}C$$
$$L_{Cu} = 26.0cm \quad L_{Al} = 33.0cm$$
$$k_{Cu} = 400 \frac{W}{m \cdot C} \quad k_{Al} = 240 \frac{W}{m \cdot C}$$

(a) Interface temperature

The heat flows through each section must be equal to each other and to the overall heat flow through the entire composite bar at steady state. If they aren't equal, there would be a net heat dump or removal at the interface, which would raise or lower the temperature there (which wouldn't be steady state). Let the temperature at the interface be T. Then, the equations for heat conduction become:

$$\frac{dQ}{dt}\|_{Cu} = \frac{dQ}{dt}\|_{Al} \quad \text{at steady-state.}$$

$$\frac{k_{Cu}A(T_h - T)}{L_{Cu}} = \frac{k_{Al}A(T - T_c)}{L_{Al}} \quad (1)$$

$$\frac{k_{Cu}}{L_{Cu}}T_h + \frac{k_{Al}}{L_{Al}}T_c = T\left(\frac{k_{Cu}}{L_{Cu}} + \frac{k_{Al}}{L_{Al}}\right)$$

Finally,

$$T = \frac{\frac{k_{Cu}}{L_{Cu}}T_h + \frac{k_{Al}}{L_{Al}}T_c}{\left(\frac{k_{Cu}}{L_{Cu}} + \frac{k_{Al}}{L_{Al}}\right)}$$
(2)

Numerically,

$$T = \frac{\frac{400W/m.^{\circ}C}{0.26m}100^{\circ}C + \frac{240W/m.^{\circ}C}{0.33m}0^{\circ}C}{\left(\frac{400W/m.^{\circ}C}{0.26m} + \frac{240W/m.^{\circ}C}{0.33m}\right)}$$
$$T = 68^{\circ}C = 3.4 \times 10^{2}K$$
(3)

(2 sig figs)

Grading scheme:

1pt: Showing that you know WHY the two heat flows are equal (steady state), SOMEWHERE in the writeup.

1pt: Correct order of the 2 temperature differences

1pt: final symbolic answer

2pt: final numeric answer. Work not necessary (but useful for partial credit here).

(b) For
$$T_{interface} = 50^{\circ}C$$

We can directly rearrange eq. 1 to get L_{Al} :

$$L_{Al} = \frac{k_{Al}}{k_{Cu}} \frac{(T - T_c)}{(T_h - T)} L_{Cu}$$
(4)

Numerically, for the interface temperature $T = 50^{\circ}C$:

$$L_{Al} = \frac{240W/m \cdot {}^{\circ}C}{400W/m \cdot {}^{\circ}C} \frac{(50^{\circ}C - 0^{\circ}C)}{(100^{\circ}C - 50^{\circ}C)} 26cm = 15.6cm \approx 16cm$$
(5)

(2 sig figs)

Grading	scheme:	

1pt: Correct order of the 2 temperature differences

2pt: final symbolic answer. Partial credit given depending on how much numerical work was shown. 2pt: final numeric answer. Work not necessary (but useful for partial credit here).

(c) Heat flow along the original rods

Again, we can use the original eq. 1 directly (any one of the 2 expressions is fine):

$$\frac{dQ}{dt}\|_{Al} = \frac{dQ}{dt}\|_{Cu} = \frac{k_{Cu}A(T_h - T)}{L_{Cu}}$$
(6)

Numerically,

$$\frac{dQ}{dt}\|_{Al} = \frac{dQ}{dt}\|_{Cu} = \frac{(400W/m \cdot {}^{\circ}C)(25 \times 10^{-4}m^2)(100^{\circ}C - 67.9^{\circ}C)}{0.26m} = 123.5W \approx 0.12kW$$
(7)

(2 sig figs)

Grading scheme: 3pt: final symbolic answer (any one expression, with proper quantities - NOT generic T's, L's, etc.) Again, a LOT of explicit numeric plugging-in gave you some partial credit here. 2pt: final numeric answer. Work not necessary (but useful for partial credit here). Missing/incorrect units are penalized.

(d) Rate of entropy production in the process

At steady state, the rod itself is merely acting as a conduit for the heat flow and absorbs no net heat. The heat flow calculated in (c) is being lost (\dot{Q}_h) by the hot reservoir (maintained at constant temperature T_h) and is gained (\dot{Q}_c) by the cold reservoir maintained at constant temperature (T_c) . So, $\dot{Q}_h = -|\dot{Q}|$ and $\dot{Q}_c = |\dot{Q}|$, where $|\dot{Q}|$ is the absolute value of the heat flow from (c).

The total rate of entropy change for the entire system is then:

$$\dot{S} = \dot{S}_h + \dot{S}_{rods} + \dot{S}_c$$

$$= \frac{\dot{Q}_h}{T_h} + 0 + \frac{\dot{Q}_c}{T_c}$$

So,

$$\dot{(S)} = |\dot{Q}| \left(\frac{1}{T_c} - \frac{1}{T_h}\right)$$
(8)

Numerically,

$$\dot{(S)} = 0.12 \times 10^3 J/s \left(\frac{1}{273.15K} - \frac{1}{373.15K}\right) \approx 0.12 \frac{J/K}{s}$$
(9)

Grading scheme:

2pt: Saying SOMETHING about why the rods don't contribute to the entropy production and justifying the signs used for the heat flows.

1pt: final symbolic answer. Credit given only if symbols are defined/make sense.

2pt: final numeric answer. Work not necessary (but useful for partial credit here). Again, units are important.

(e) Scaling questions

If all linear dimensions of the rods are increased by a factor of 2, the cross-section area would go up by a factor of 4 and the length would go up by a factor of 2. There is an additional factor that must be considered (this can be done in two equally correct ways):

- 1. If you use the heat flow equation (eq. 6) derived in part (c) to analyse this question, you have to comment on why the interface temperature (T) doesn't change when you change ALL the linear dimensions. Just concluding this (by inspection) from your symbolic answer for part (a) (eq. 2) would be sufficient (notice that if both the Cu and Al lengths change by the SAME factor there, T is unchanged).
- 2. An equivalent way to solve the entire problem (but NO one did it this way) was to calculate the effective R-value of the composite rod and write the heat flow equation in terms of this effective R-value. Then of course, you would have had to show why this effective R-value didn't change with a scaling of all the dimensions.

With these 3 ingredients, we see that the heat flow would INCREASE by a factor of 2 overall.

Grading scheme: 1pt: Showing that the effective R-value or the interface temperature do NOT change (read above). 1pt: Knowing that $L \to 2L$ 1pt: Seeing that $A \to 4A$ 2pt: Final conclusion - heat flow increases by factor of 2.

Common mistakes

If you have any of these, chances are that I agonized over your grade to begin with so it most likely won't change. Also, any time you see grades crossed out/changed on your exam, I spent a LOT of time on those, so the chances that there was a grading mistake are pretty slim. Also, remember that where partial credit is concerned, I judged your understanding of the problem as a whole and rewarded good explanations.

(a) No justification for equating heat flows. Symbolic work not done/no symbolic answer. Incorrect numeric answer (bad units, wrong substitution, etc.)

(b) No symbolic answer given. Using numerical heat flow from part (a). Claiming that the total length stays the same (no reason for this, but a lot of people did this).

(c) Not writing symbolic answers. Forgetting to convert the area and/or length to SI units/converting incorrectly. Not writing units on your answers (general mistake for all parts).

(d) Very few got this correct. The most common mistake was writing a strange integral and obtaining a natural log of temperatures. This received no credit. Only a handful got full credit on this one.

(e) Only 1 person got full credit. Most common mistake was forgetting about $T_{interface}$ (described in the solution). Second most common mistake was forgetting that area would also change. Partial credit was given to wrong answers only if some explanation was offered.

(d) [5 points] Water vapor and CO₂ added to the atmosphere increase the emissivity. CO₂ increases the emissivity in the infrared (where the Earth's thermal radiation peaks) according to $\epsilon CO_2 = A + B * ln(C/Co)$, where C is the increased atmospheric density of CO₂ compared to the pre-driving density of CO₂ called Co. For this problem assume that A = 0.05, B = 0.04, and Co = 300 ppmv (parts per million by volume) from pre-1960. It is 383 ppmv now. How much has the infrared emissivity of the atmosphere increased due to the CO₂ increase between 1960 and now? What would be the corresponding temperature rise for the Earth?

 $\epsilon CO_2 = A + B * \ln(C/Co) = 0.05 + 0.04 * \ln(383/300)$ $\Delta \epsilon = 0.04 * \ln(383/300) = 0.00977 \text{ about } 1\%$ The change in temperature $\epsilon_o T^4 = (\epsilon_0 - \Delta \epsilon)(T + \delta T)^4$ $\delta T \sim 0.75C$

(e) [2 points] The Greenhouse Effect is more difficult to calculate when including water vapor because there is positive feedback. A temperature rise of the ground, and especially of oceans and lakes causes water vapor in the atmosphere to increase. (So also is reflecting cloud cover.) For a 1°C rise from 14°C by how much would the water vapor fraction rise? The saturated vapor pressure of water at 14°C and 15°C are about 1.6×10^3 Pa (= N/m²) and 1.71×10^3 Pa (= N/m²) respectively and an average relative humidity for the earth is about 50%. What would be fractional content of the atmosphere in water vapor by volume? $0.5 \times 1.17 \times 10^3/1.013 \times 10^5 = 0.0058$

(f) [5 points] Why does the water vapor partial pressure rise increasingly rapidly with temperature? See attached figure and provide a rough physical argument/reason and an approximate formula.

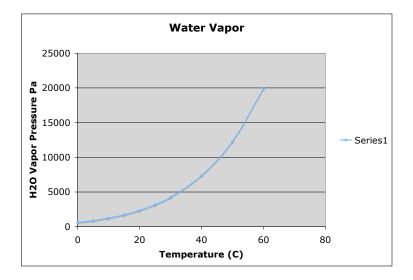


Figure 3: Water Vapor Partial Pressure Versus Temperature.

Boltzmann factor $e^{-\Delta E/kT} = 153843000000^* \text{EXP}(-5284/(A12+273.15))$ fit by making a semilog. $f_{H_2O} = Aexp - B/T$ so that $ln(f_{H_2O}) = ln(A) - B/T$ pick two values and solve for ln(A) and B.

(g) [3 points] At the same temperature, a column of dry air will be denser or heavier than a column of air containing any water vapor. Thus, any volume of dry air will sink if placed in a larger volume of moist air. Also, a volume of moist air will rise or be buoyant if placed in a larger region of dry air. As the temperature rises the proportion water vapor in the air increases, its buoyancy will become larger. This increase in buoyancy can have a signicant atmospheric impact, giving rise to powerful, moisture rich, upward air currents when the air temperature and sea temperature reaches 25°C or above. This phenomenon provides a significant motivating force for cyclonic and anticyclonic weather systems (tornados and hurricanes).

What is the difference in density at 15° C (1.71×10^{3} Pa) between dry and saturated air? How about at 25° C (3170 Pa), what is the difference in density? What is the difference in pressure in the two cases? What is the expected wind speed?

Solution: Water vapor content is at 15°C is 1.71×10^3 Pa and at 25°C is (3170 Pa). One standard atmosphere is 1.013×10^5 So the fractional differences is

 $f(T = 15^{\circ}C) = 1.71 \times 10^3 / 1.013 \times 10^5 = 1.688 \times 10^{-2}$ and

 $f(T = 25^{\circ}C) = 3.17 \times 10^3 / 1.013 \times 10^5 = 3.13 \times 10^{-2}.$

The mean molecular weight of air is $MW = 0.8 \times 28 + 0.2 \times 32 = 28.8$ The molecular weight of the water vapor is 18. Thus the displaced difference is 10.8 in molecular weight or fraction = 10.8/28.8 = 0.375.

The difference in density is

$$\begin{split} &\Delta\rho(T=15^\circ C)=f(T=15^\circ C)\times 0.375\times \rho_0=1.688\times 10^{-2}\times 0.375\times 1kg/m^3=0.00633\\ &\Delta\rho(T=25^\circ C)=f(T=25^\circ C)\times 0.375\times \rho_0=3.13\times 10^{-2}\times 0.375\times 1kg/m^3=0.0117\\ &\text{The difference in pressure is then}\\ &\Delta P(T=15^\circ C)=1710\times 0.375\ \text{Pa}=641\ \text{Pa}\\ &\Delta P(T=25^\circ C)=3170\times 0.375\ \text{Pa}=1190\ \text{Pa}\\ &\text{Use Bernoulli equation (energy conservation changed to energy density conservation)}\\ &\text{KE}+\text{PE}=\text{constant}\rightarrow \text{KE/Volume}+\text{PE/Volume}=\text{constant}\\ &\frac{1}{2}\rho v^2+\Delta P+P_0=P_0=\text{constant}\\ &v=\sqrt{2\Delta P/\rho}=\sqrt{2\times 641Pa/1kg/m^3}=36\ \text{m/s}=128\ \text{km/hr}=77\ \text{mi/hr}\\ &v=\sqrt{2\Delta P/\rho}=\sqrt{2\times 1190Pa/1kg/m^3}=49\ \text{m/s}=176\ \text{km/hr}=106\ \text{mi/hr} \end{split}$$