MATH 53 - MIDTERM \#2

Each problem counts 20 points.
Problem \#1. Calculate the line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

for the vector field $\mathbf{F}=<-y, x>$ and the half circle C given parametrically by $\mathbf{r}(t)=<\cos t, \sin t>$ for $0 \leq t \leq \pi$.

Problem $\# \mathbf{\# 2}$. Find all solutions (x, y, z, λ) of the equations given by the Lagrange multiplier method for the problem of determining the points on the surface $z^{2}=x y+4$ closest to the origin.

Of these solutions, which give the points closest to the origin?
Problem \#3. For the vector field $\mathbf{F}=<y z+x^{2}, x z+y, x y+z>$, compute the value of

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where C is any curve connecting the point $(1,2,0)$ to $(2,0,3)$.
Problem \#4. Use the transformation

$$
x=2 u, y=4 u+v
$$

to evaluate the integral

$$
\iint_{R}(2 x(y-2 x))^{\frac{1}{2}} d A
$$

where R is the parallelogram with vertices $(0,0),(0,1),(2,4),(2,5)$.
Problem \#5. Find the volume of the solid lying within the sphere $\rho=4 \cos \phi$ and below the cone $\phi=\frac{\pi}{4}$.

