MATH 53 — MIDTERM #2

Each problem counts 20 points.

Problem #1. Calculate the line integral

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

for the vector field $\mathbf{F} = \langle -y, x \rangle$ and the half circle C given parametrically by $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$ for $0 \leq t \leq \pi$.

Problem #2. Find all solutions (x, y, z, λ) of the equations given by the Lagrange multiplier method for the problem of determining the points on the surface $z^2 = xy + 4$ closest to the origin.

Of these solutions, which give the points closest to the origin?

Problem #3. For the vector field $\mathbf{F} = \langle yz + x^2, xz + y, xy + z \rangle$, compute the value of

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

where C is any curve connecting the point (1, 2, 0) to (2, 0, 3).

Problem #4. Use the transformation

$$x = 2u, \, y = 4u + v$$

to evaluate the integral

$$\iint_R (2x(y-2x))^{\frac{1}{2}} dA,$$

where R is the parallelogram with vertices (0,0), (0,1), (2,4), (2,5).

Problem #5. Find the volume of the solid lying within the sphere $\rho = 4 \cos \phi$ and below the cone $\phi = \frac{\pi}{4}$.