1. (a) Compute ∇f for $f(x, y)=e^{x^{2} y+\sin (x y)}$.

We have $f_{x}(x, y)=(2 x y+y \cos (x y)) e^{x^{2} y+\sin (x y)}$ and $f_{y}(x, y)=\left(x^{2}+x \cos (x y)\right) e^{x^{2} y+\sin (x y)}$, so

$$
\nabla f(x, y)=\left\langle(2 x y+y \cos (x y)) e^{x^{2} y+\sin (x y)},\left(x^{2}+x \cos (x y)\right) e^{x^{2} y+\sin (x y)}\right\rangle
$$

You can also write your answer as $\nabla f(x, y)=e^{x^{2} y+\sin (x y)}\left\langle 2 x y+y \cos (x y), x^{2}+x \cos (x y)\right\rangle$ or $\nabla f(x, y)=e^{x^{2} y+\sin (x y)}\left(2 x y+y \cos (x y) \mathbf{i}+x^{2}+x \cos (x y) \mathbf{j}\right)$.
(b) Compute ∇g for $g(x, y, z)=\left(x^{2}+y^{3}+z^{4}\right)^{-1}$.

We have $g_{x}=-2 x\left(x^{2}+y^{3}+z^{4}\right)^{-2}, g_{y}=-3 y^{2}\left(x^{2}+y^{3}+z^{4}\right)^{-2}$ and $g_{z}=-4 z^{3}\left(x^{2}+y^{3}+z^{4}\right)^{-2}$. Then

$$
\nabla g(x, y, z)=\left\langle-2 x\left(x^{2}+y^{3}+z^{4}\right)^{-2},-3 y^{2}\left(x^{2}+y^{3}+z^{4}\right)^{-2},-4 z^{3}\left(x^{2}+y^{3}+z^{4}\right)^{-2}\right\rangle
$$

You can also write your answer as $\nabla g(x, y, z)=\left(x^{2}+y^{3}+z^{4}\right)^{-2}\left\langle-2 x,-3 y^{2},-4 z^{3}\right\rangle$ or $\nabla g(x, y, z)=$ $\left(x^{2}+y^{3}+z^{4}\right)^{-2}\left(-2 x \mathbf{i}-3 y^{2} \mathbf{j}-4 z^{3} \mathbf{k}\right)$.
2. Find the critical points of the function $f(x, y)=x^{4}+2 y^{2}-4 x y$, and classify each as a local maximum, local minimum or saddle point.

The partial derivatives of f are: $f_{x}(x, y)=4 x^{3}-4 y, f_{y}(x, y)=4 y-4 x$. Setting both equal to zero gives the system of equations $y=x^{3}$ and $y=x$. This is easily solved to obtain

$$
\text { Critical points: }(0,0),(1,1),(-1,-1)
$$

To classify them we use the second order test, so we need the second order partials derivatives of $f: f_{x x}(x, y)=12 x^{2}, f_{y y}(x, y)=4$ and $f_{x y}(x, y)=f_{y x}(x, y)=-4$. Then $D(x, y)=48 x^{2}-16$. Evaluating at the critical points we get:
$D(0,0)=-16<0$ thus
$(0,0)$ is a saddle point.
$D(1,1)=32>0$ and $f_{x x}(1,1)=12>0$, thus
$(1,1)$ is a local minimum.
Finally, $D(-1,-1)=32>0$ and $f_{x} x(-1,-1)=12>0$, thus

$$
(-1,-1) \text { is a local minimum. }
$$

3. The position vector $\mathbf{r}(t)$ of a particle moving in three dimensions satisfies $\mathbf{r}^{\prime}=\mathbf{r} \times \mathbf{a}$, where a is a fixed vector. Show that either the particle is not moving or else its motion lies within a circle. (Hint: Show $|\mathbf{r}|$ and $\mathbf{r} \cdot \mathbf{a}$ are constant).
We start by proving the hint. We first show that $|\mathbf{r}|^{2}$ is constant (and hence $|\mathbf{r}|$ is constant):

$$
\frac{d|\mathbf{r}|^{2}}{d t}=\frac{d(\mathbf{r} \cdot \mathbf{r})}{d t}=2 \mathbf{r} \cdot \mathbf{r}^{\prime}=2 \mathbf{r} \cdot(\mathbf{r} \times \mathbf{a})=2(\mathbf{r} \times \mathbf{r}) \cdot \mathbf{a}=0
$$

because $\mathbf{r} \times \mathbf{r}=0$. In the last line we use that for vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ we have the identity $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$. Since the derivative in time of $|\mathbf{r}(t)|^{2}$ is zero, we conclude that it is constant.
We now show that $\mathbf{r} \cdot \mathbf{a}$ is constant:

$$
\frac{d}{d t}(\mathbf{r} \cdot \mathbf{a})=\mathbf{r}^{\prime} \cdot \mathbf{a}+\mathbf{r} \cdot \mathbf{a}^{\prime}=\mathbf{r}^{\prime} \cdot \mathbf{a}=(\mathbf{r} \times \mathbf{a}) \cdot \mathbf{a}=\mathbf{r} \cdot(\mathbf{a} \times \mathbf{a})=0
$$

We have proved that both $|\mathbf{r}|$ and $\mathbf{r} \times \mathbf{a}$ are constant. We now conclude: We distinguish two cases

Case 1: $|\mathbf{r}|=0$. In this case $r(t)=\langle 0,0,0\rangle$ for all time, so the particle is not moving.

Case 2: $|\mathbf{r}|=d>0$. In this case the particle moves in a sphere of radius d and since it also satisfies $\mathbf{r} \times \mathbf{a}=e$, for some constant e, it also moves in a plane $(\mathbf{r} \times \mathbf{a}=e$ is the equation of a plane with normal vector a). Then the particle moves in the intersection of the sphere and the plane which is either a point, if the surfaces are tangent, and thus the particle is not moving; or the intersection is a circle, and so the motion lies within a circle.

4. Find the area of the region inside the curve $r=4 \sin 2 \theta$ and outside the circle $r=2$ for $0 \leqslant \theta \leqslant \frac{\pi}{2}$. (Reminders: $\sin \frac{\pi}{6}=\frac{1}{2}, \sin ^{2} x=\frac{1-\cos 2 x}{2}$.)
The two curves are shown in the picture below. We first find the intersections: $4 \sin 2 \theta=2$ where $\theta \in\left[0, \frac{\pi}{2}\right]$. This gives us $\sin 2 \theta=\frac{1}{2}$ so $\theta=\frac{\pi}{12}$ or $\theta=\frac{5 \pi}{12}$.

Then the area of the region is

$$
\begin{aligned}
A & =\frac{1}{2} \int_{\frac{\pi}{12}}^{\frac{5 \pi}{12}}(4 \sin 2 \theta)^{2} d \theta-\frac{1}{2} \int_{\frac{\pi}{12}}^{\frac{5 \pi}{12}}(2)^{2} d \theta=4 \int_{\frac{\pi}{12}}^{\frac{5 \pi}{12}}(1-\cos 4 \theta) d \theta-\frac{2 \pi}{3} \\
& =\frac{2 \pi}{3}-\left.\sin 4 \theta\right|_{\frac{\pi}{12}} ^{\frac{5 \pi}{12}}=\frac{2 \pi}{3}-\left(\sin \left(\frac{5 \pi}{3}\right)-\sin \left(\frac{\pi}{3}\right)\right) \\
& =\frac{2 \pi}{3}+\sqrt{3} .
\end{aligned}
$$

5. Assume that the two equations $f(x, y, z)=0, g(x, y, z)=0$ together implicitly define y as a function of x and z as a function of x. Find formulas for $y^{\prime}=\frac{d y}{d x}$ and $z^{\prime}=\frac{d z}{d x}$ in terms of the partial derivatives of f and g.
Using the chain rule we differentiate the two equations $f(x, y(x), z(x))=0$ and $g(x, y(x), z(x))=$ 0 with respect to x to obtain:

$$
f_{x}+f_{y} y^{\prime}+f_{z} z^{\prime}=0 \text { and } g_{x}+g_{y} y^{\prime}+g_{z} z^{\prime}=0 .
$$

This is a linear system for y^{\prime} and z^{\prime}. Multiplying the first equation by g_{z} and the second by f_{z} and subtracting we obtain, after some algebraic manipulation, that

$$
y^{\prime}=\frac{f_{z} g_{x}-g_{z} f_{x}}{f_{y} g_{z}-g_{y} f_{z}} .
$$

Similarly we obtain

$$
z^{\prime}=\frac{f_{x} g_{y}-g_{x} f_{y}}{f_{y} g_{z}-g_{y} f_{z}}
$$

