
Practice Midterm 1 , Math 53

1. (a) Compute ∇f for f(x, y) = ex2y+sin(xy).

We have fx(x, y) = (2xy + y cos(xy))ex2y+sin(xy) and fy(x, y) = (x2 + x cos(xy))ex2y+sin(xy), so

∇f(x, y) = 〈(2xy + y cos(xy))ex2y+sin(xy), (x2 + x cos(xy))ex2y+sin(xy)〉.

You can also write your answer as ∇f(x, y) = ex2y+sin(xy)〈2xy + y cos(xy), x2 + x cos(xy)〉 or
∇f(x, y) = ex2y+sin(xy)(2xy + y cos(xy)i + x2 + x cos(xy)j).

(b) Compute ∇g for g(x, y, z) = (x2 + y3 + z4)−1.

We have gx = −2x(x2 + y3 + z4)−2, gy = −3y2(x2 + y3 + z4)−2 and gz = −4z3(x2 + y3 + z4)−2.
Then

∇g(x, y, z) = 〈−2x(x2 + y3 + z4)−2,−3y2(x2 + y3 + z4)−2,−4z3(x2 + y3 + z4)−2〉.

You can also write your answer as ∇g(x, y, z) = (x2+y3+z4)−2〈−2x,−3y2,−4z3〉 or ∇g(x, y, z) =
(x2 + y3 + z4)−2(−2xi − 3y2j − 4z3k).

2. Find the critical points of the function f(x, y) = x4 + 2y2 − 4xy, and classify each as a local
maximum, local minimum or saddle point.

The partial derivatives of f are: fx(x, y) = 4x3 − 4y, fy(x, y) = 4y − 4x. Setting both equal
to zero gives the system of equations y = x3 and y = x. This is easily solved to obtain

Critical points: (0, 0), (1, 1), (−1,−1)

To classify them we use the second order test, so we need the second order partials derivatives
of f : fxx(x, y) = 12x2, fyy(x, y) = 4 and fxy(x, y) = fyx(x, y) = −4. Then D(x, y) = 48x2−16.
Evaluating at the critical points we get:

D(0, 0) = −16 < 0 thus

(0, 0) is a saddle point.

D(1, 1) = 32 > 0 and fxx(1, 1) = 12 > 0, thus

(1, 1) is a local minimum.

Finally, D(−1,−1) = 32 > 0 and fxx(−1,−1) = 12 > 0, thus

(−1,−1) is a local minimum.

3. The position vector r(t) of a particle moving in three dimensions satisfies r′ = r× a, where a
is a fixed vector. Show that either the particle is not moving or else its motion lies within a
circle. (Hint: Show |r| and r · a are constant).

We start by proving the hint. We first show that |r|2 is constant (and hence |r| is constant):

d|r|2

dt
=

d(r · r)
dt

= 2r · r′ = 2r · (r × a) = 2(r × r) · a = 0,



because r × r = 0. In the last line we use that for vectors a,b, c we have the identity
a · (b × c) = (a × b) · c. Since the derivative in time of |r(t)|2 is zero, we conclude that it is
constant.

We now show that r · a is constant:

d

dt
(r · a) = r′ · a + r · a′ = r′ · a = (r × a) · a = r · (a × a) = 0.

We have proved that both |r| and r × a are constant. We now conclude: We distinguish two
cases

Case 1: |r| = 0. In this case r(t) = 〈0, 0, 0〉 for all time, so the particle is not moving.

Case 2: |r| = d > 0. In this case the particle moves in a sphere of radius d and since it also
satisfies r × a = e, for some constant e, it also moves in a plane (r × a = e is the equation
of a plane with normal vector a). Then the particle moves in the intersection of the sphere
and the plane which is either a point, if the surfaces are tangent, and thus the particle is not
moving; or the intersection is a circle, and so the motion lies within a circle.
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4. Find the area of the region inside the curve r = 4 sin 2θ and outside the circle r = 2 for
0 6 θ 6 π

2
. (Reminders: sin π

6
= 1

2
, sin2 x = 1−cos 2x

2
.)

The two curves are shown in the picture below. We first find the intersections: 4 sin 2θ = 2
where θ ∈ [0, π

2
]. This gives us sin 2θ = 1

2
so θ = π

12
or θ = 5π

12
.
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Then the area of the region is

A =
1

2

∫ 5π
12

π
12

(4 sin 2θ)2dθ − 1

2

∫ 5π
12

π
12

(2)2dθ = 4

∫ 5π
12

π
12

(1 − cos 4θ)dθ − 2π

3

=
2π

3
− sin 4θ

∣∣∣ 5π
12

π
12

=
2π

3
− (sin(

5π

3
) − sin(

π

3
))

=
2π

3
+
√

3.

5. Assume that the two equations f(x, y, z) = 0, g(x, y, z) = 0 together implicitly define y as a
function of x and z as a function of x. Find formulas for y′ = dy

dx
and z′ = dz

dx
in terms of the

partial derivatives of f and g.

Using the chain rule we differentiate the two equations f(x, y(x), z(x)) = 0 and g(x, y(x), z(x)) =
0 with respect to x to obtain:



fx + fyy
′ + fzz

′ = 0 and gx + gyy
′ + gzz

′ = 0.

This is a linear system for y′ and z′. Multiplying the first equation by gz and the second by
fz and subtracting we obtain, after some algebraic manipulation, that

y′ =
fzgx − gzfx

fygz − gyfz

.

Similarly we obtain

z′ =
fxgy − gxfy

fygz − gyfz

.


