University of California, Berkeley
Physics 7B, Fall 2007 (Xiaosheng Huang)
Midterm 1
Friday, 10/3/2008
6:00-8:00 PM

Physical Constants:
Avogadro's number, $N_{A}: 6.02 \times 10^{23}$
Gas Constant, R : $8.315 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
Boltmann's Constant, $k_{B}: 1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Stefan-Boltzmann Constant, $\sigma .5 .67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$
Specific heat for water: $c=4.19 \times 10^{3} \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Heat of vaporization for water: $L_{V}=22.6 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
Heat of fusion for water: $L_{F}=3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
Note: Formulaic answers may only involve the quantities given in a problem and constants.

1) (15 pts .) The mean free path of CO_{2} molecules at STP is measured to be about $5.6 \times 10^{-8} \mathrm{~m}$. Estimate the diameter of a CO_{2} molecule.

Formulaic Answer: \square

Numerical Answer: \square
2) (15 pts.) Five multiple choice questions:
(i) The blackbody radiation of an object depends on its temperature. The total amount of energy radiated is proportional to
a) T.
b) T^{2}.
c) T^{3}.
d) T^{4}.
(ii) When He I (normal He) turns into He II (superfluid He), as seen in the video shown during class, the boiling all of a sudden stops. This is due to the fact that
a) heat conductivity of He increases by a large factor.
b) heat conductivity of He decreases by a large factor.
c) heat capacity of He increases by a large factor.
d) heat capacity of He decreases by a large factor.
(iii) If you throw 1000 coins into the air, the number of throws needed to get all heads is on the order of
a) 10 .
b) 100 .
c) 1000 .
d) none of the above.
(iv) Which of the following process is irreversible?
a) $\mathrm{p}+\mathrm{n} \rightarrow{ }^{2} \mathrm{H}+\gamma$.
b) One full cycle of a Carnot engine.
c) Free expansion of an ideal gas.
d) Isobaric expansion of an ideal gas.
(v) The coefficient of linear expansion for aluminum is α. A very thin sheet of aluminum has area A_{0} at T_{0}. If the temperature is raised by a small amount ΔT (that is, $\alpha \Delta T \ll 1$), the area of the sheet will increase by approximately
a) $\alpha \Delta T A_{0}$.
b) $\alpha^{2} \Delta T A_{0}$.
c) $2 \alpha \Delta T A_{0}$.
d) $\alpha \Delta T^{2} A_{0}$.
3) (35 pts.) Consider the following cycle for n moles of a monatomic ideal gas.

Find, in terms of n, P_{1}, V_{1} and P_{2}, the heat that flows into the gas and the work done by the gas for
a) the adiabatic process;

Answer:
\square
b) the isothermal process;

Answer:

c) the isobaric process.

Answer:

d) The volume coefficient β is defined as $\beta=(1 / V)(\mathrm{d} V / \mathrm{d} T)$. Find β as a function of temperature for the isobaric process.

Answer:
\square
4) (35 pts.) One mole of water is cooled from $T_{l}=25^{\circ} \mathrm{C}$ to $T_{2}=0^{\circ} \mathrm{C}$ and frozen. All the heat taken by the refrigerator, operating at maximum theoretical efficiency (no entropy created) is delivered to a second mole of water at again $T_{1}=25^{\circ} \mathrm{C}$, heating it to $T_{3}=100^{\circ} \mathrm{C}$ and converting a fraction (n^{\prime} mole) into vapor.
a) Find the total amount of heat $\left(\left|\mathrm{Q}_{1}\right|\right)$ and entropy $\left(\left|\Delta S_{l}\right|\right)$ that flow out of the first mole of water in terms of T_{1} and T_{2}.

Answer:
\square
b) Find the total amount of heat $\left(\left|\mathrm{Q}_{2}\right|\right)$ entropy $\left(\left|\Delta S_{l}\right|\right)$ that flow into the second mole of water in terms of T_{1}, T_{2} and n^{\prime}.

Answer:
\square
c) What is $\Delta S_{1}+\Delta S_{2}$? (Note that there are no absolute value signs around the entropy changes here. Hint: Can this process be reversed?)

Answer:
\square
d) Find n^{\prime}.

Formulaic Answer: \square

Numerical Answer:

$e)$ How much work must be done by the refrigerator?

Formulaic Answer: \square

Numerical Answer: \square

