Second Midterm Examination
 Monday November 42013
 Closed Books and Closed Notes

Question 1
A System of Two Particles
35 Points

Consider a particle of mass m_{2} which is suspended below a cart of mass m_{1} by a rod of negligible mass whose length ℓ changes with time: $\ell=\ell(t)$. The cart, which is free to move on a smooth horizontal track, is attached to a fixed point by a linear spring of stiffness K and unstretched length ℓ_{0} and is under the influence of an applied force $\mathbf{P}=P_{0} \cos (\omega t) \mathbf{E}_{1}$ (cf. Figure 1). The particles are under the influence of the respective gravitational forces $-m_{1} g \mathbf{E}_{3}$ and $-m_{2} g \mathbf{E}_{3}$.

Figure 1: A system of two particles. The particle of mass m_{1} is free to move on a smooth horizontal track while a particle of mass m_{2} is suspended by a rod of length $\ell(t)$ underneath. The mass of the rod is negligible.

A Cartesian coordinate system is chosen to parameterize the motion of m_{1} and a spherical polar coordinate system is chosen to parameterize $\mathbf{r}_{2}-\mathbf{r}_{1}$:

$$
\begin{equation*}
\mathbf{r}_{1}=\left(x+\ell_{0}+c\right) \mathbf{E}_{1}+y \mathbf{E}_{2}+z \mathbf{E}_{3}, \quad \mathbf{r}_{2}=\left(x+\ell_{0}+c\right) \mathbf{E}_{1}+y \mathbf{E}_{2}+z \mathbf{E}_{3}+R \mathbf{e}_{R} . \tag{1}
\end{equation*}
$$

Here, c is a constant such that when $x=0$, the spring is unstretched.
(a) (6 Points) Compute the 12 vectors $\frac{\partial \mathbf{r}_{i}}{\partial q^{K}}$ where $q^{1}=x, q^{2}=\theta, q^{3}=\phi, q^{4}=y, q^{5}=z$, and $q^{6}=R$.
(b) (6 Points) What are the three constraints on the motion of the system of particles? Give prescriptions for the constraint forces $\mathbf{F}_{c_{1}}$ and $\mathbf{F}_{c_{2}}$ acting on the respective particles.
(c) (3 Points) If the kinetic energy of the system of particles has the representation

$$
\begin{align*}
T= & \frac{m_{1}+m_{2}}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+\frac{m_{2}}{2}\left(\dot{R}^{2}+R^{2} \sin ^{2}(\phi) \dot{\theta}^{2}+R^{2} \dot{\phi}^{2}\right) \\
& +m_{2} \dot{R}(\dot{x} \cos (\theta) \sin (\phi)+\dot{y} \sin (\theta) \sin (\phi)+\dot{z} \cos (\phi)) \\
& +m_{2} R \dot{\phi}(\dot{x} \cos (\theta) \cos (\phi)+\dot{y} \sin (\theta) \cos (\phi)-\dot{z} \sin (\phi)) \\
& +m_{2} R \sin (\phi) \dot{\theta}(-\dot{x} \sin (\theta)+\dot{y} \cos (\theta)), \tag{2}
\end{align*}
$$

then what is the Lagrangian $\tilde{L}=\tilde{L}(x, \theta, \phi, \dot{x}, \dot{\theta}, \dot{\phi}, t)$ for the system of particles?
(d) (3 Points) Compute the following three summations:

$$
\begin{equation*}
\mathbf{F}_{n c o n_{1}} \cdot \frac{\partial \mathbf{r}_{1}}{\partial q^{k}}+\mathbf{F}_{n c o n_{2}} \cdot \frac{\partial \mathbf{r}_{2}}{\partial q^{k}}, \quad k=1,2,3 \tag{3}
\end{equation*}
$$

where $\mathbf{F}_{n c o n_{\alpha}}$ is the nonconservative force acting on the particle of mass m_{α} where $\alpha=1,2$.
(e) (5 Points) Show the combined power supplied by the constraint forces $\mathbf{F}_{c 1}$ and $\mathbf{F}_{c 2}$ on the system vanishes if $\dot{\ell}(t)=0$.
(f) (12 Points) Show that the equations of motion of the system can be expressed in the form

$$
\left[\begin{array}{ccc}
\left(m_{1}+m_{2}\right) & -m_{2} \ell \sin (\theta) \sin (\phi) & m_{2} \ell \cos (\theta) \cos (\phi) \tag{4}\\
-m_{2} \ell \sin (\theta) \sin (\phi) & m_{2} \ell^{2} \sin ^{2}(\phi) & 0 \\
m_{2} \ell \cos (\theta) \cos (\phi) & 0 & m_{2} \ell^{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{x} \\
\ddot{\theta} \\
\ddot{\phi}
\end{array}\right]+\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]=\left[\begin{array}{c}
P_{0} \cos (\omega t) \\
0 \\
0
\end{array}\right] .
$$

For full credit, it is necessary to give complete expressions for $f_{1,2,3}$.

Question 2

A Classroom Demonstration
 20 Points

Referring to Figure 2, a classroom demonstration of vibration phenomena consists of two particles of mass m_{1} and m_{2} which are connected by a nonlinear spring whose potential energy U_{s} is given by

$$
\begin{equation*}
U_{s}=\frac{K_{1}}{2}\left(\left\|\mathbf{r}_{2}-\mathbf{r}_{1}\right\|-\ell_{0}\right)^{2}+K_{2}\left(\frac{1}{\left\|\mathbf{r}_{2}-\mathbf{r}_{1}\right\|-\ell_{0}}\right) \tag{5}
\end{equation*}
$$

where $K_{1}>0, K_{2}$ and $\ell_{0}>0$ are constants, \mathbf{r}_{1} is the position vector of the particle of mass m_{1}, and \mathbf{r}_{2} is the position vector of the particle of mass m_{2}. In addition to the spring force, vertical gravitational forces act on the particles.

Figure 2: A system of two particles. The particle of mass m_{1} is constrained to move in a prescribed manner while the particle of mass m_{2} is free to move in space.

To analyze the system, a set of Cartesian coordinates x, y, and z are assigned to describe the position vector of the mass m_{1} and a system of spherical polar coordinates R, ϕ, and θ are used to describe $\mathbf{r}_{2}-\mathbf{r}_{1}$:

$$
\begin{equation*}
\mathbf{r}_{1}=x \mathbf{E}_{1}+y \mathbf{E}_{2}+z \mathbf{E}_{3}, \quad \mathbf{r}_{2}=\mathbf{r}_{1}+R \mathbf{e}_{R} \tag{6}
\end{equation*}
$$

We also choose

$$
\begin{equation*}
q^{1}=R=\left\|\mathbf{r}_{2}-\mathbf{r}_{1}\right\|, \quad q^{2}=\theta, \quad q^{3}=\phi, \quad q^{4}=x, \quad q^{5}=y, \quad q^{6}=z \tag{7}
\end{equation*}
$$

In the sequel, we assume the motion of m_{1} is completely prescribed:

$$
\begin{equation*}
\mathbf{r}_{1}=f(t) \mathbf{E}_{3} \tag{8}
\end{equation*}
$$

(a) (5 Points) What is the constrained Lagrangian $\tilde{L}(R, \phi, \dot{R}, \dot{\phi}, \dot{\theta}, t)$ for the system of particles? [Feel free to use (2) to help with your solution.]
(b) (5 Points) Explain why Approach II can be used to establish the equations of motion.
(c) (10 Points) Show that the equations of motion for the system can be expressed in the form:

$$
\left[\begin{array}{ccc}
m_{2} & 0 & 0 \tag{9}\\
0 & m_{2} R^{2} \sin ^{2}(\phi) & 0 \\
0 & 0 & m_{2} R^{2}
\end{array}\right]\left[\begin{array}{c}
\ddot{R} \\
\ddot{\ddot{ }} \\
\ddot{\phi}
\end{array}\right]+\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]=\left[\begin{array}{c}
-m_{2}(g+\ddot{f}) \cos (\phi) \\
0 \\
m_{2}(g+\ddot{f}) R \sin (\phi)
\end{array}\right]
$$

For full credit, supply expressions for f_{1}, f_{2}, and f_{3}.

Notes on Spherical Polar Coordinates

Recall that the spherical polar coordinates $\{R, \phi, \theta\}$ are defined using Cartesian coordinates $\left\{x=x_{1}, y=x_{2}, z=x_{3}\right\}$ by the relations:

$$
R=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}, \quad \theta=\arctan \left(\frac{x_{2}}{x_{1}}\right), \quad \phi=\arctan \left(\frac{\sqrt{x_{1}^{2}+x_{2}^{2}}}{x_{3}}\right)
$$

In addition, it is convenient to define the following orthonormal basis vectors:

$$
\left[\begin{array}{l}
\mathbf{e}_{R} \\
\mathbf{e}_{\phi} \\
\mathbf{e}_{\theta}
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) \sin (\phi) & \sin (\theta) \sin (\phi) & \cos (\phi) \\
\cos (\theta) \cos (\phi) & \sin (\theta) \cos (\phi) & -\sin (\phi) \\
-\sin (\theta) & \cos (\theta) & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{E}_{1} \\
\mathbf{E}_{2} \\
\mathbf{E}_{3}
\end{array}\right] .
$$

Figure 3: Spherical polar coordinates
For the coordinate system $\{R, \phi, \theta\}$, the covariant basis vectors are

$$
\mathbf{a}_{1}=\mathbf{e}_{R}, \quad \mathbf{a}_{2}=R \mathbf{e}_{\phi}, \quad \mathbf{a}_{3}=R \sin (\phi) \mathbf{e}_{\theta} .
$$

In addition, the contravariant basis vectors are

$$
\mathbf{a}^{1}=\mathbf{e}_{R}, \quad \mathbf{a}^{2}=\frac{1}{R} \mathbf{e}_{\phi}, \quad \mathbf{a}^{3}=\frac{1}{R \sin (\phi)} \mathbf{e}_{\theta} .
$$

For a particle of mass m which is unconstrained, the linear momentum \mathbf{G}, angular momentum \mathbf{H}_{O} and kinetic energy T of the particle are

$$
\begin{aligned}
\mathbf{G} & =m \dot{R} \mathbf{a}_{1}+m \dot{\phi} \mathbf{a}_{2}+m \dot{\theta} \mathbf{a}_{3} \\
\mathbf{H}_{O} & =m R^{2}\left(\dot{\phi} \mathbf{e}_{\theta}-\dot{\theta} \sin (\phi) \mathbf{e}_{\phi}\right) \\
T & =\frac{m}{2}\left(\dot{R}^{2}+R^{2} \dot{\phi}^{2}+R^{2} \sin ^{2}(\phi) \dot{\theta}^{2}\right)
\end{aligned}
$$

The gradient of a function $U(R, \theta, \phi)$ has the representation

$$
\nabla u=\frac{\partial u}{\partial R} \mathbf{e}_{R}+\frac{\partial u}{\partial \theta} \frac{1}{R \sin (\phi)} \mathbf{e}_{\theta}+\frac{1}{R} \frac{\partial u}{\partial \phi} \mathbf{e}_{\phi} .
$$

Questians 1

$\downarrow g$

$$
\begin{aligned}
& r_{1}=\left(x+c+l_{0}\right) E_{7}+y E_{2}+z E_{7} \\
& r_{2}=r_{1}+R \mathbb{E}_{R}
\end{aligned}
$$

(a)

(b)

$$
\begin{array}{ll}
\Psi_{1}=\underline{I}_{1} \cdot \underline{E}_{2}=0 & \underline{F}_{c_{1}}=\lambda_{1} \underline{E}_{2}+\lambda_{2} \underline{E}_{7}+\lambda_{\ni} \underline{E}_{R} \\
\Psi_{2}=\underline{r}_{2} \cdot \underline{E}_{7}=0 & \underline{F}_{c_{2}}=\lambda_{\ni} \underline{\mathbb{E}_{R}} \\
\psi_{7}=\left\|r_{2}-\underline{r}_{1}\right\|-l=0 &
\end{array}
$$

$\lambda_{1} \underline{E}_{2}+\lambda_{2} \underline{E}_{3}$ is the normal force acling on m_{1} $\lambda_{\rightarrow} \underline{Q R}_{R}$ is the tossion force in the rod.
(c)

$$
\begin{aligned}
\tilde{L}= & \frac{m_{1}+m_{2}}{2} \dot{x}^{2}+\frac{m_{2}}{2}\left(l^{2} \dot{\phi}^{2}+l^{2} \dot{\theta}^{2} \operatorname{Sin}^{2} \phi\right) \\
& +m_{2} \dot{l} \dot{x} \cos \theta \sin \phi+m_{2} l \dot{\phi} \dot{x} \cos \theta \cos \phi-m_{2} l \sin \phi \sin \theta \dot{x} \dot{\theta} \\
= & \tilde{u} \\
\tilde{u}= & \frac{1}{2} k x^{2}+m_{2} g l \cos \phi
\end{aligned}
$$

(d)

$$
\begin{aligned}
F_{n o x_{1}} \cdot \frac{\partial r_{1}}{\partial x}+\underline{F n c o n}_{2} \cdot \frac{\partial r_{2}}{\partial x} & =\left(F_{n o w}+F_{n c o r_{2}}\right) \cdot E_{1} \\
& =\left(F_{c_{1}}+P_{0} \cos t E_{1}+E_{c 2}\right) \cdot E_{1} \\
& =P_{0} G_{0}+
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fncous: } \frac{\partial r_{1}}{\partial \theta}+\text { Fnconiz }^{\partial \theta} \frac{\partial r_{2}}{\partial \theta}=E_{n c o w_{2}} \cdot R \sin \phi \Phi \theta \\
& =\quad F_{c_{2}} \cdot R \operatorname{Sin} \phi \in O \\
& =0 \\
& F_{n c o w_{2}} \cdot \frac{\partial r_{1}}{\partial \varphi}+F_{n \mathrm{COw}_{2}} \cdot \frac{\partial r_{2}}{\partial \phi}=F_{n c o n i z} \cdot R \Theta \phi \\
& =E_{c_{2}} \cdot \operatorname{Re}_{\phi} \\
& =0 .
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial \dot{q}^{k}}\right)-\frac{\partial \tilde{L}}{\partial q^{k}}=F_{n c o w_{1}} \cdot \frac{\partial r_{1}}{\partial q^{k}}+F_{n c o d_{2}} \cdot \frac{\partial r_{L}}{\partial q^{k}} \text { where } k=1,2, \mathcal{z} \\
& \frac{d}{d t}\left(\frac{\partial^{2}}{\partial \dot{x}}=\left(m_{1}+m_{L}\right) \dot{x}+m_{2} \dot{l} \cos \theta \sin \phi+m_{2} \ell \dot{\phi} \cos \theta \cos \phi \dot{\theta}\right) \\
& +k x=P_{0} \operatorname{Cos} t \\
& \frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial \dot{\theta}}=m_{2} l^{2} \dot{\theta} \sin ^{2} \phi-m_{2} l \sin \phi \sin \theta \dot{x}\right) \\
& +m_{2} e \dot{x} \sin \theta \sin \phi+m_{2} \ell \dot{x} \sin \theta \cos \phi \\
& +m_{2} \ell \sin \phi \operatorname{sos} \theta \dot{x} \dot{\theta}=0 \\
& \frac{d}{d t}\left(\left(\frac{\partial \tilde{L}}{\partial \dot{\phi}}\right)=m_{2} \ell^{2} \dot{\phi}+m_{2} l \dot{x} \cos \theta \cos \phi\right)-m_{2} \ell^{2} \dot{\theta}^{2} \sin \phi \cos +m_{2} \dot{\rho} \cos \cos \phi \\
& +m_{2} Q \phi \dot{x} \sin \phi \cos \theta+m_{2} \ell \dot{x} \dot{\theta} \operatorname{co\phi } \sin \theta \\
& -m_{2} g l \sin \phi=0
\end{aligned}
$$

Exponding and readranging

$$
\alpha_{L}=\frac{d}{d t}\left(m_{L} l^{2} \sin ^{2} \phi\right) \dot{\theta} \quad \begin{gathered}
\text { (severd condeltion occu in } \\
\text { this eaudion) }
\end{gathered}
$$

$$
\alpha_{\theta}=-m_{2} l^{2} \dot{\theta}^{2} \sin \phi \cos \phi-m_{2} g l \sin \phi
$$

(f)

$$
\begin{aligned}
P=\underline{F}_{c_{1}} \cdot \underline{v}_{1}+\underline{F}_{c_{2}} \cdot \underline{V}_{2}= & \left(\lambda_{1} \underline{E}_{2}+\lambda_{2} \underline{E}_{7}+\lambda_{\ni} \underline{E}_{R}\right) \cdot \underline{V}_{1} \\
& +\lambda_{7} \underline{\underline{P}}_{R} \cdot \underline{V}_{2} \\
= & \lambda_{7} \underline{E R}_{R}\left(\underline{V}_{2}-\underline{V}_{1}\right) \\
= & \lambda_{7} \dot{l}
\end{aligned}
$$

Hence P vanisheo if $\dot{Q}=0$ which wos be shwn.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
m_{1}+m_{2} & -m_{2} l \sin \phi \sin \theta & m_{2} l \cos \theta \phi \\
-m_{2} l \sin \phi \sin \theta & m_{2} \ell^{2} \sin ^{2} \phi & 0 \\
m_{2} l \cos \theta \cos \phi & 0 & m_{2} l^{2}
\end{array}\right]\left[\begin{array}{c}
\ddot{x} \\
\ddot{\theta} \\
\ddot{\phi}
\end{array}\right]+\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{\theta}
\end{array}\right]=\left[\begin{array}{c}
P_{0} \operatorname{co\omega } t \\
0 \\
0
\end{array}\right]} \\
& \alpha_{1}=k x+\frac{d}{d t}\left(m_{2} \ell \cos \theta \cos \phi\right) \dot{\phi}+\frac{d}{d t}\left(m_{2} \ell \sin \phi \sin \theta\right) \dot{\theta} \\
& +\frac{d}{d t}\left(m_{2} \dot{e} \cos \theta \sin \phi\right)
\end{aligned}
$$

QuEstion 2
(a)

$$
\begin{aligned}
\tilde{\mathscr{L}}= & \frac{m_{L}}{2}\left(\dot{R}^{2}+R^{2} \dot{\phi}^{2}+R^{2} \dot{\theta}^{2} \sin ^{2} \phi\right) \\
& +\dot{f}\left(m_{2} \dot{R} \cos \phi-m_{2} R \dot{\phi} \sin \phi\right) \\
& -m_{2} g R \cos \phi-\frac{K_{1}}{2}\left(R-l_{0}\right)^{2}-\frac{K_{2}}{R-l_{0}}
\end{aligned}
$$

(b) Approach II con be wed for this problem because
(i) The integrable constraints can ell be expressed in toms of a single coordinate

$$
\begin{aligned}
& \psi_{1}=r_{1} \cdot E_{1}=0 \quad \Leftrightarrow \quad q^{4}=0 \\
& \mu_{2}=r_{1} \cdot \underline{E}_{2}=0 \\
& \psi_{7}=r_{1} \cdot E_{7}-f=0 \quad q^{5}=0 \\
& \hline 0 \quad q^{6}-f=0
\end{aligned}
$$

(ii) The constraint forces Ec, acting on the systems con be prescribed using Lagrange's prescription.
(c)

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial \dot{R}}=m_{2} \dot{R}+m_{2} \dot{f} \cos \phi\right)-m_{2} R \dot{\phi}^{2}-m_{2} R \dot{\theta}^{2} \sin ^{2} \phi \\
& +m_{2} \dot{f} \dot{\phi} \sin \phi \\
& +m_{2} g \cos \phi+K_{1}\left(R-l_{0}\right)-\frac{k_{2}}{\left(R-l_{0}\right)^{2}} \\
& =0 \\
& \frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial \dot{\theta}}=m_{2} R^{2} \dot{\theta} \sin ^{2} \phi\right)-\left(\frac{\partial \tilde{L}}{\partial \theta}=0\right)=0 \\
& \frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial \dot{\phi}}=m_{L} R^{2} \phi-m_{2} R \dot{f} \sin \phi\right)-\left(\frac{\partial \tilde{L}}{\partial \phi}=\underset{\sim m_{2}}{m_{2} R^{2} \dot{\theta} \sin \phi \sin \phi}\right. \\
& \text { - } m_{2} R \dot{f} \dot{\phi} \cos \phi \\
& \left.+m_{2} g R \operatorname{Sin} \phi\right)=0
\end{aligned}
$$

Expanding and combiningterms

$$
\left[\begin{array}{ccc}
m_{2} & 0 & 0 \\
0 & m_{2} R^{2} \sin ^{2} \phi & 0 \\
0 & 0 & m_{2} R^{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{R} \\
\ddot{\theta} \\
\ddot{\phi}
\end{array}\right]+\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{\theta}
\end{array}\right]=\left[\begin{array}{c}
m_{2}(g+\ddot{f}) \cos \phi \\
0 \\
m_{2}(g+\ddot{f}) R \sin \phi
\end{array}\right]
$$

mass matrix terms ca be find by inspection from \tilde{T}

$$
\begin{aligned}
\alpha_{1}= & -m_{2} \dot{f} \dot{\phi} \sin \phi+m_{2} \ddot{f} \cos \phi \\
& -m_{2} R \dot{\phi}^{2}-m_{2} R \dot{\theta}^{2} \sin ^{2} \phi+m_{2} \dot{f} \dot{\phi} \sin \phi+k_{1}\left(R-l_{0}\right)-\frac{k_{2}}{\left(R-l_{0}\right)^{2}} \\
\alpha_{2}= & 2 m_{2} R \dot{R} \dot{\theta} \sin ^{2} \phi+2 m_{2} R^{2} \dot{\theta} \sin \phi \cos \phi \dot{\phi} \\
\alpha_{3}= & 2 m_{2} R \dot{R} \dot{\phi}-m_{2} \dot{R} \dot{f} \sin \phi-m_{2} R \dot{f} \dot{\phi} \cos \phi \\
= & 2 m_{2} R R^{2} \dot{\theta}^{2} \sin \phi \cos \phi+m_{2} \dot{R} \dot{f} \sin \phi+m_{2} R \dot{f} \dot{\phi} \cos \phi \\
= & m_{2} R^{2} \dot{\theta}^{2} \sin \phi \cos \phi
\end{aligned}
$$

The routing eauctions I motion are identic t these that wold be obtained if we let gravity $g \longrightarrow g+\ddot{f}$ and set $r_{1}=0$.

