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Question 1
A System of Two Particles
35 Points

Consider a particle of mass mo which is suspended below a cart of mass m; by a rod of negligible
mass whose length ¢ changes with time: ¢ = ¢(¢). The cart, which is free to move on a smooth
horizontal track, is attached to a fixed point by a linear spring of stiffness K and unstretched
length ¢y and is under the influence of an applied force P = P, cos(wt)E; (cf. Figure 1). The
particles are under the influence of the respective gravitational forces —mjgE3 and —mgygEs.

Linear spring K, ¢y

smooth horizontal track
E;

mq PO cos(wt)El
E, 0] g

massless rod

Figure 1: A system of two particles. The particle of mass my is free to move on a smooth horizontal track while
a particle of mass ma is suspended by a rod of length €(t) underneath. The mass of the rod is negligible.

A Cartesian coordinate system is chosen to parameterize the motion of m; and a spherical polar
coordinate system is chosen to parameterize ro — ry:
rlz(x+€0+c)E1+yE2+zE3, r2:(x+€0+c)E1+yE2+zE3—l—ReR. (].)

Here, ¢ is a constant such that when x = 0, the spring is unstretched.



(a) (6 Points) Compute the 12 vectors gqr}( where ¢ = 2,¢> = 0,¢° = ¢,¢" = y,¢° = 2, and
¢ =R.
(b) (6 Points) What are the three constraints on the motion of the system of particles? Give
prescriptions for the constraint forces F., and F., acting on the respective particles.
(c) (3 Points) If the kinetic energy of the system of particles has the representation
T — w (12 +y2 + 22) ‘l’ % <R2 ‘l’ R2 Sin2(¢)é2 + R2Q'52>
+my R (& cos() sin(¢) + ¢ sin(f) sin(@) + 2 cos(4))
+my R (i cos(6) cos(¢) + ysin(6) cos(¢) — £ sin(¢))

+moRsin(¢)0 (—zsin(f) + g cos(h)), (2)
then what is the Lagrangian L = L (:c, 0,0, i,0, qB, t) for the system of particles?

(d) (3 Points) Compute the following three summations:

81“1 81“2
Fncon1 . 8—qk + nconz 8—qk’ k = ]-7 2a 37 (3)
where F,,.,, is the nonconservative force acting on the particle of mass m, where a = 1, 2.

(e) (5 Points) Show the combined power supplied by the constraint forces F.; and Fe on the
system vanishes if ¢(¢) = 0.

(f) (12 Points) Show that the equations of motion of the system can be expressed in the form

(mq + mg) —malsin(0) sin(¢) mal cos(0) cos(¢p) z fi Py cos (wt)
—myl sin(f) sin(¢) myl? sin(¢) 0 01+ fo|= 0
mal cos(0) cos(¢) 0 mal? b f3 0

(4)

For full credit, it is necessary to give complete expressions for f s 3.



Question 2
A Classroom Demonstration
20 Points

Referring to Figure 2, a classroom demonstration of vibration phenomena consists of two par-
ticles of mass m; and my which are connected by a nonlinear spring whose potential energy U,
is given by
K 1 2 1
U =25 (=l = 0+ Ko (=) )
where K7 > 0, Ky and ¢y > 0 are constants, r; is the position vector of the particle of mass mq,
and r9 is the position vector of the particle of mass my. In addition to the spring force, vertical

gravitational forces act on the particles.

g Nonlinear spring

i /

E;

Figure 2: A system of two particles. The particle of mass my is constrained to move in a prescribed manner
while the particle of mass mo is free to move in space.

To analyze the system, a set of Cartesian coordinates x, y, and z are assigned to describe the
position vector of the mass m; and a system of spherical polar coordinates R, ¢, and 0 are used
to describe ry — ry:
ri = LL’El + yE2 + ZE3, ro =11+ RGR. (6)
We also choose
¢ =R=|rs—m1|, =0, =0, ¢'=2 =y == (7)

In the sequel, we assume the motion of m; is completely prescribed:
r; = f(1)Es. (8)

(a) (5 Points) What is the constrained Lagrangian L (R, o, R, 0.0, t) for the system of parti-
cles? [Feel free to use (2) to help with your solution.]

(b) (5 Points) Explain why Approach II can be used to establish the equations of motion.

(c) (10 Points) Show that the equations of motion for the system can be expressed in the form:

ms 0 0 R I3 —my (g + f) cos(¢)
0 meR?sin’(¢) 0 0|+ f|= 0 . (9)
0 0 ma R? ) I3 mo (g + f) Rsin(¢)

For full credit, supply expressions for fi, fo, and fs.



Notes on Spherical Polar Coordinates

Recall that the spherical polar coordinates {R, ¢,0} are defined using Cartesian coordinates
{z = x1,y = 29,2 = x3} by the relations:

Va4 23
R = /2% + a3 + 23, 9:arctan<@) : qﬁ:arctan(g).
L1 T3

In addition, it is convenient to define the following orthonormal basis vectors:

er cos(0)sin(¢) sin(f)sin(¢)  cos(¢) E,
ey, | = | cos(f)cos(¢) sin(f)cos(¢) —sin(¢p) E,
ey —sin(0) cos(6) 0 E;
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Figure 3: Spherical polar coordinates

For the coordinate system {R, ¢, 0}, the covariant basis vectors are
a; =ep, a=Re;, az= Rsin(¢)ey.

In addition, the contravariant basis vectors are

1 1
al =ep, a’= al= — ey

R Rsin(¢)
For a particle of mass m which is unconstrained, the linear momentum G, angular momentum
Hyo and kinetic energy T' of the particle are
G = mRa;, + quag + mfas ,
Ho = mR? (éeg — ésin(¢)e¢> ,
T = % (Rz + R** + R? Sin2(¢)92) .

The gradient of a function U(R, 6, ¢) has the representation

ou ou 1 1 ou

Vu = ﬁeR + %RTH(@GQ + §8—¢6¢
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