
U.C. Berkeley — CS170 : Algorithms, Fall 2013 Midterm 1
Professor: Satish Rao October 10, 2013

Midterm 1 Solutions

1 True/False

1. The Mayan base 20 system produces representations of size that is asymptotically different from that of
decimal (base 10) system.
Solution: False log20(n) = number of digits using base 20 and log10(n) = number of digits using base
10. log20(n) ∈ Θ(log10(n))

2. If f(n) = O(g(n)), then there is some value of n where f(n) ≥ g(n).
Solution: False g(n) can be greater than f(n) for all n, for example g(n) = f(n) + 1

3. If f(n) = O(g(n)) and log g(n) ≥ 1 for all n, then log f(n) = O(log g(n)).
Solution: True f(n) ≤ cg(n) =⇒ log f(n) ≤ log g(n) + log c ≤ 2 log c log g(n)

4. If f(n) = O(g(n)), then 2f(n) = O(2g(n)).
Solution: False Consider f(n) = n and g(n) = n/2.

5. x(p−1)(q−1) = 1 (mod pq) for all x 6= 0 (mod pq) if p and q are distinct primes.
Solution: False This implies that x has an inverse mod pq and that gcd(x, pq) = 1, which would not be
true if x = p

6. x(p−1)(q−1)+1 = x (mod pq) if p and q are distinct prime.
Solution: True Same as the correctness of RSA when ed = (p− 1)(q − 1) + 1

7. If there is an x ≥ 2 where x(N−1) = 1 mod N then N is prime or Carmichael.
Solution: False 88 = 1 mod 9. In general, for any odd number N , we have (N − 1)N−1 = (−1)N−1

mod N = 1 mod N (since N − 1 is even).

8. Recall, that a valid coloring for a graph is an assignment of colors for a graph where each edge’s endpoints
do not have the same color. A k coloring is a valid coloring using at most k colors.

If a graph has a degree 4 node, it requires 5 colors to have a valid coloring.

Solution: False A star can be two colored.

1

9. A valid two coloring of a two colorable graph can be produced by coloring using the low order bit (odd/even)
of the level in a BFS tree.
Solution: True By alternating colors with depth we know that this coloring is valid if only considering
the BFS tree edges. If there is still an edge where both endpoints point to nodes of the same color, then
the graph has an odd cycle and is not two colorable.

10. Briefly justify or give a counterexample: A valid coloring for a two colorable undirected graph can be given
by using the last bit of the pre numbers.
Solution: True For a tree edge (u, v) pre(u) and pre(v) differ by an odd number since when one has
returned from all previous explores when exploring v. For a back edge, if the pre(v) differs by an even
number, we have found an odd cycle.

11. Every DAG has exactly one topological ordering
Solution: False Consider the graph {(A,B), (A,C)}, which has two topological orderings ABC and
ACB.

12. If a DFS in an undirected graph G contains exactly one back-edge, then G can be made acyclic by removing
one edge.
Solution: True Component with back edge remains connected with k − 1 edges where k is number of
nodes in that component, so it is a tree and is acyclic.

13. If G is a directed graph and can be made acyclic by removing exactly one edge, then any DFS in G will
only contain exactly one back-edge
Solution: False Two different cycles can share one edge, thus by removing that one edge the entire
graph is made acyclic.

14. Given a valid pre order numbering of a directed graph, there is only one corresponding post order num-
bering.
Solution: True A valid DFS is well-defined by how it breaks ties among a vertex’s children, which leads
to exactly one pre and post-number ordering.

15. A primitive 8th root of unity is 1√
2

+ 1√
2
i.

Solution: True A primitive 8th root of unity is ei 2π
8 = 1√

2
+ 1√

2
i

2

2 How Many?

1. What is the number of modular multiplications to compute x49 mod N using repeated squaring?
Solution: 7 Five squarings (to get x2, x4, x8, x16, x32), then two multiplications (x49 = x32 × x16 × x1).

2. What is the inverse of 19 (mod 21)?

Solution: 10 (mod 21) 19× 10 ≡ 190 ≡ (9× 21) + 1 ≡ 1 (mod 21).

3. For integers a, x, b, y where ax + by = 1, what is the inverse of x modulo y?
Solution: a ax ≡ 1− by ≡ 1 (mod y) =⇒ a ≡ x−1 (mod y)

4. What is the probability that x + y + z = 1 (mod p), when x, y and z are chosen uniformly at random from
{0, . . . , p− 1}?

Solution: 1
p This is similar to universal hashing. Assume that x and y have already been picked. There

is exactly 1 value of z that can satisfy x + y + z ≡ 1 (mod p). Thus, regardless of what x and y are, there
is a 1

p chance that the chosen z will satisfy x + y + z ≡ 1 (mod p).

5. A separator in a graph is a set of nodes whose removal produces a graph with more than one connected
component. Give the best possible upper bound on the size of a separator in a graph that has a breadth
first search tree with depth D ≥ 3 in terms of D and n, the number of nodes in the graph.

Solution: n−2
D−2 Removing any of the middle D− 2 levels of the BFS tree leaves at least two components.

The maximum number of nodes in the middle D − 2 levels is n − 2 (exclude the BFS starting node and
the leaves on the outermost level; to get an upper bound on the size of the separator, we consider the case
where there is only be one leaf on the outmost level). We get n−2

D−2 by averaging over all middleD−2 levels.

6. What is the maximum number of edges in a 10 node undirected two colorable graph?
Solution: 25 From homework, we know that a two colorable graph is bipartite. Let x be the number
of nodes in the smaller of a 10-node bipartite graph’s two partitions. The maximum number of edges in
such a graph is obtained if every node in one partition has an edge to every node in the other partition
(and vice versa). Thus, the maximum number of nodes a 10-node bipartite graph could have is x(10− x),
which has a maximum value of 25 at x = 5.

3

3 Sun Tzu’s and Euler’s Napkins

Short answer!

1. (a) What is 56a + 22b (mod 11)?
Solution: 22 = 0 (mod 11) and 56 = 1 (mod 11), thus 56a + 22b = a (mod 11).

(b) What is 56a + 22b (mod 7)?
Solution: 22 = 1 (mod 7) and 56 = 0 (mod 7), thus 56a + 22b = b (mod 7).

(c) Find a number x (mod 77) where x = 1 (mod 11) and x = 2 (mod 7).
Solution: Plug in a = 1, and b = 2 into the formula from parts (a) and (b)! You get 56(1) + 22(2) =
100 = 23 (mod 77).

2. Let p be prime.

(a) How many numbers are relatively prime to p2 in {0, . . . , p2 − 1}.
Solution: p2− p = p(p− 1) since exactly the p multiples of p less then p2 are not relatively prime wih
p2.

(b) What is the number of numbers that have inverses (mod p2)?
Solution: p(p− 1) by the numbers with inverses (mod p2) are those that are relatively prime to p2

according to Euclid’s Theorem. Part (a) gives that number.

(c) For what value of l in terms of p would it always be true that xl = 1 (mod p2), if x is relatively prime
with p. Briefly justify (must do so).
Solution: p(p−1) by proof analogy to Fermat’s Theorem; Let S is the all the numbers in {1, . . . , p2−1
that are relatively prime to p2, and T = {ax|x ∈ S}. Since x has an inverse (mod p2), S = T , and the
product of their elements is the same. This allows us to conclude that x|S| = 1 (mod p2). From part
(b), |S| = p(p− 1).

This is a special case of Euler’s Totient Theorem as is the identity x(p−1)(q−1) = 1 (mod p)q for distinct
primes. That inequlity does not hold when p = q, e.g., 24 6= 1 (mod 9).

This is a difficult problem with a short answer.

4

4 Short Answer

No need for proofs of correctness or runtime! (Briefly justify if unsure.)

1. Asymptotically solve T (n) = 8T (n/4) + O(n1.3).

Solution: O(n1.5). Putting this recurrence in the form T (n) = aT (n/b) + O(nd), we see by the Master
theorem that since logb a = log4 8 = log2 8

log2 4 = 1.5 > d = 1.3, the answer is O(n1.5).
Most people got this right. But some students lost points for incorrectly assuming that log4 8 was either 1.3
or 2. Students also lost some points for not writing the answer in the O-notation (though we were lenient
with people who used Θ instead of O).

2. Asymptotically solve T (n) =
√
nT (
√
n) + O(n).

Solution: O(n log log n). The simplest solution is to consider the function S(n) = T (n)/n, which satisfies
the recurrence S(n) = S(

√
n) + O(1). It is clear that this has O(log log n) levels (since the size of the

problem is n1/2k at the kth level), so that we get S(n) = O(log log n), and hence T (n) = O(n log log n).
Another solution is to directly observe (via the recurrence tree) that the work done per level in the original
recurrence is O(n).
We gave partial credit to students who had the right estimate for the work done per level, even if they erred
in calculating the number of levels. Some students lost points for not using the O-notation, as in the last
problem.

3. Given a tree and a depth first search based pre/post order, give a fast method for determining whether u
is an ancestor of v in the tree (where the root is the node where the search is started.)
Solution: u is an ancestor of v in the DFS tree if and only if pre(u) < pre(v) < post(v) < post(u). Answers
of the form pre(u) < pre(v) < post(u) also received full credit (because they imply the last condition
through the non-intersection property of pre-post numbers).
Some students lost points for not counting parents as ancestors. Some people also lost points for giving a
condition for when u is a descendant of v. Some students also lost points for saying that checking the last
inequality is optional (since if you do not do that, it can happen that the v is not reacahble from u in the
tree). We gave (almost) full credit if it was clear that the student had the right justification but made a typo
in writing down the final answer.

4. The Fourier Transform of (1, 0, 1,−1) is (1, i, 3,−i). What is the Fourier Transform of (1, 0, 0, 0, 1, 0,−1, 0)?

Solution: (1, i, 3,−i, 1, i, 3,−i). The simplest way to see this is to use the definition of the FFT algorithm.
Let ω be a primitive 8th root of unity. Then, in order to compute the FFT of the vector (1, 0, 0, 0, 1, 0,−1, 0),
we first compute the FFT of the even co-ordinates: (s0, s1, s2, s3) = FFT [(1, 0, 1,−1), ω2], which we are
already told is (1, i, 3,−i). We then consider the FFT (s′0, s

′
1, s
′
2, s
′
3) of the odd co-ordinates. Since these

co-ordinates are all 0, the FFT (s′0, s
′
1, s
′
2, s
′
3) is (0, 0, 0, 0) as well. We now combine the results to get that

the FFT of the original vector is simply (1, i, 3,−i, 1, i, 3,−i) (that is, the (already given) FFT of the even
co-ordinates repeated twice).
Many students did not use the extra information in the question and proceeded to compute the FFT directly.
This approach is error-prone, and we were able to give partial credit only when the number of calculation
errors was not too high (typically, when it was less than 2). However, correct answers received full credit
irrespective of the method used.

5

5. Briefly describe a method that finds the coefficients of a polynomial whose roots are r1, . . . , rn. (You may
produce one where the leading coefficient is 1.) It should run in O(n log2 n) time and can use FFT as a
black box.
Solution: We are trying to find the coefficients of the polynomial (x − r1)(x − r2) · · · (x − rn). Split the
roots into two (approximately) equal halves: r1, r2, . . . , rbn/2c and rbn/2c+1, . . . , rn. Recursively find the
polynomial whose roots are r1, . . . , rbn/2c, and the polynomial whose roots are rbn/2c+1, . . . , rn. Multiply
these two polynomials together using FFT, which takes O(n log n). When the base case is reached with
only 1 root r, return (x− r). The recurrence for this algorithm is T (n) = 2T (n/2) +O(n log n), which gives
O(n log2 n).

6. Given an undirected graph with nonnegative edge costs, along with nonintersecting subsets S and T of
vertices, give a short description of an efficient method to determine the distance between the closest pair
of nodes between S and T ; that is, u ∈ S, v ∈ T such that dist(u, v) is minimal in terms of shortest path
costs.
Solution: Add node s with zero weight edges to every node in S and a node t with zero weight arcs
from every node in T and use Dijkstra’s to compute the s-t distance. Running time is the same as that of
Dijkstra’s.
Some other methods of doing the same thing:

1. Collapse the vertices in S to a single metanode and do the same for T , and run Dijkstra’s.
2. Collapse the vertices in S to a single metanode, run Dijkstra’s, and stop as soon as you call delete-min

on a vertex in T .
3. Run Dijkstra’s, but initialize the distances of all nodes in S to 0.
4. Set the weight of any edge between vertices in S to 0, and run Dijkstra’s from any vertex in S.

A lot of students incorrectly assumed that S∪T = V (the set of all vertices), and so the algorithm would be
to find theminimal edge (u, v) such that u ∈ S, v ∈ T . It was only stated that S and T were non-intersecting
subsets, not that every vertex had to be in S or T .

6

5 Divide and Conquer

1. Given an (unsorted) array of numbers in an array, a local maximum is at index i if A[i] is larger than
A[i− 1] and A[i+ 1]. (The last and first elements only need be larger than the previous and next elements
respectively.) Give an efficient algorithm to find a local maximum in an array of length n where no entries
are repeated.
Solution: Both parts use divide and conquer to narrow down the search space of a local maximum. In
both the 1-d and 2-d cases, we have the following

Observation If we start at ANY element, keep moving to ANY larger adjacent element if there
exists one, and stop when all adjacent elements are smaller, it is obvious that our path must end
at a local maximum. Furthermore, since elements are distinct, the numbers on the path strictly
increase, so we never visit the same element more than once, which means the path must end
at some point.

Our algorithm first pick the center element A[b n
2 c], and check if it is a local maximum. If it is, output it,

and stop. If it is not, there must exists a larger neighbor. If A[b n
2 c − 1] > A[b n

2 c], recursively search for a
local maximum in A[0, . . . , b n

2 c− 1]. Otherwise, search for a local maximum in A[b n
2 c+ 1, n− 1]. We only

look at one half, even when both neighbors are larger. At the base case, we have a list of just one element,
which will be a local maximum.

The algorithm is correct in all cases. WhenA[b n
2 c] is a local maximum, the algorithm outputs it. IfA[b n

2 c]
is not, suppose we are in the case that the algorithm chooses to search A[0, . . . , b n

2 c − 1] (same argument
for the other case). By our ealier observation, there must exists a local maximum in that half (consider
the path starting with A[b n

2 c]→ A[b n
2 c− 1], the path must end in that half, thus a local maximum exists

there). Furthermore, exactly one end of this half list is not an end element of the original list, that is
A[b n

2 c − 1], but we know A[b n
2 c − 1] > A[b n

2 c], so if A[b n
2 c − 1] is a local maximum in the half list, it is a

local maximum in the original list.
The running time is O(log n), since we at each level we solve one problem of size n

2 , plus constant work
(comparing the middle elements to neighbors). T (n) = T (n

2) + O(1) T (n) = O(log n).

7

2. Given an n × n array of numbers A, a local maximum is defined as an (i, j) where A[i, j] is larger than
any “adjacent” entry; any (i′, j′) where either i′ or j′ differs by 1. For example, for entry (2, 2) the adjacent
entries are (1, 2), (3, 2), (2, 1) and (2, 3). Also, entry (0, 0) has only two adjacent entries: (1, 0) and (0, 1).
Give an algorithm that given an n× n array, A, of distinct numbers finds a local maximum in O(n) time.
(Note that this is “sublinear” in the size of the array. An O(n2) solution will recieve no credit.)
Solution: We will solve a slightly more general problem:

Given n × n array A, and a threshold element A[i∗, j∗] in the array, find a local maximum with
the additional constraint that the local maximum is ≥ A[i∗, j∗].

It is easy to see we can solve the original problem by solving this problem with an arbitrary A[i∗, j∗]. No-
tice there must exists such a local maximum by considering an increasing path starting at A[i∗, j∗]

For the base case, when n ≤ 3, we just search all elements, and output the global maximum.
Otherwise, let r = d n

2 e, and let the four quadrants, each of size d n
2 e × d

n
2 e, contain the elements

A[1 . . . r, 1 . . . r], A[1 . . . r, r . . . n], A[r . . . n, 1 . . . r], and A[r . . . n, r . . . n] respectively. Notice elements on row
r and column r are contained in more than one quadrants.
First the algorithm looks at all elements on the borders of the four quadrants (i.e. rows 1, r, n, and columns
1, r, n), as well as all the neighbors of the border elements. There are O(n) such elements, and we find the
maximum element among them, call it A[̂i, ĵ]. We have three cases

(i) A[̂i, ĵ] < A[i∗, j∗], recursively find a local maximum in the quadrant containing A[i∗, j∗], with the old
threshold A[i∗, j∗].

(ii) A[̂i, ĵ] ≥ A[i∗, j∗], and A[̂i, ĵ] is on the border of a quadrant. Since A[̂i, ĵ] is the maximum among the
points we considered, which include all its neighbors, it is a local maximum, and also ≥ A[i∗, j∗], we
just return it, and stop.

(iii) A[̂i, ĵ] ≥ A[i∗, j∗], and A[̂i, ĵ] is in the interior of a quadrant. Recursively find a local maximum in
that quadrant, with threshold element A[̂i, ĵ].

To see the algorithm is correct, we need to check the three cases

(i) Use the observation at the beginning of 5.1, start the path at A[i∗, j∗], which is an interior point of
the quadrant, since the path strictly increases, we will never visit any element on the border since
they are all ≤ A[̂i, ĵ] < A[i∗, j∗], so our increasing path never leaves the quadrant. This guarantees
that a local maximum ≥ the threshold exists in this quadrant, and it must be an interior element.
So the result returned by the recursion will be a valid answer for our original problem, because all
neighbors of that local maximum in the original problem are present in the subproblem.

(ii) This case is obvious.
(iii) This case is similar to case (i). We know a local maximum ≥ A[̂i, ĵ] exists, and it must be an interior

element of this quadrant.

Running time: At each level we do O(n) work, and look at one subproblem of size n
2 ×

n
2 , so we have the

recurrence T (n) = T (n
2) + O(n), which gives O(n) running time.

8

6 Directing those without direction

Suppose we have an undirected connected graph, and we would like to find a strongly connected orientiation of
its edges: that is, an assignment of directions to its edges such that the entire graph becomes strongly connected
(i.e. every node is reachable from every other node via a directed path).

For the undirected connected graph below the next figure is a strongly connected orientation, and the last is an
orientation that is not strongly connected.

a

b

c a

b

c a

b

c

1. Give an example of a connected undirected graph where this cannot be done.
Solution: 3pts: Any graph with a bridge. The simplest example is the 2-node graph A−B.

2. A bridge in a connected undirected graph is an edge whose removal leaves a graph with two connected
components. Give a linear time algorithm to find a strongly connected orientation in any connected undi-
rected graph without a bridge. Justify its correctness.
Solution: Algorithm (4pts): DFS. Label the tree edges in the explored direction, label the back edges
toward the ancestors.
Correctness (3pts): The main way to solve this was by contradiction, but there were some interesting
inductive solutions. Here, we only present the contradiction way.
By Contradiction: If this fails, consider the sink strongly connected component. Consider the first edge
into the component that was explored, explore would not return until the entire component is explored
and any other edge incident to this component would then be considered. If the other end was previously
explored, dfs would have already explored this edge, thus, dfs would have explored this edge, and it would
be directed outward, contradicting the notion that this is the sink component. Thus, there are no other
edges incident to this component. Thus, the first edge is a bridge, which contradcts the claim that we can
not have a bridge, so this can not fail
Running time (1pt): Mention DFS or say "linear time"
Some comments: Some students said use the highest post number vertex after doing one DFS. But, since
this graph is undirected and connected, the vertex which you start the search will have highest post
number (so you’re essentially doing DFS twice for no reason).
Also, please do note the difference between what algorithms we can apply to directed graphs and undi-
rected graphs. It doesn’t really make much sense to say strongly connected components in undirected
graphs (since the graph is connected, we will only get back one connected component). However, this
notion does make sense in this problem since we are assigning directions to undirected edges.
One more misconception: A strongly connected component in a directed graph does not imply that there
is a cycle going through every single node. However, it is true that every node is part of a cycle, just not
necessarily the same one.

9

3. Give a linear time algorithm to determine whether there is a bridge in a graph.
Solution: (4pts): Do the orientation above, and check if it is strongly connected (by making SCCs in
directed graph and check if there is more than one component)
The sentence above was enough to get full credit, but it does miss the fact that you still need to prove that
an strongly connected orientation of a graph with a bridge is impossible. But, this is easy to show, since
the bridge separates the graph into two components S, T , and if we orient the bridge one way, we have
no way to get from S to T , or vice versa if we orient it the other way. Solutions that did not prove this
direction were not penalized.
Please do note that this is an undirected graph. Thus, running the SCC algorithm from class does not
work, since that is only for directed graphs. Wemust change it to a directed graph first from our algorithm
in part (b), then apply the SCC algorithm.

10

