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Question 3
For notation, refer to lecture 13, pages 3 to 5.

Part a)
In the frequency domain, the original signal x[n] is

X(ej“’) = Z S[nle /*" = 1vow

n=-—oo

X(el®)

27 2n

Then, we select every second sample and discard the
rest to get x,, [n]. The resulting signal is still §[n], so

Xp(ej“’) =1Vw.

One can also obtain this by considering X (e/*) for

w € [—m, ). First scale the height ofX(ef“’) by %, and
then repeat this segment every %’T = 1 (the colored,
dotted horizontal lines in the plot below). Then, the
overlapping parts add up and we get back X,, (ej’*’) =

1 Vw. A common mistake is to not add these
overlapping parts.

Xp(e)?)
R
1
In N n
2 2

From here we could proceed to determine X, (ej“’), but
there is no need because during upsampling we will

convert X, (ej"’) back to Xp(ej‘”) anyway. Thus, we can
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just directly apply the ideal low-pass filter to X), (ej‘”).
T

The filter is a box with width % =3 and height N = 2, as

shown in the figure above.

X, (e5)
2

2n

s
2

Applying the filter, we get Xr(ej"’), which is NOT the
original signal. The corresponding time domain signal is
calculated in lecture 9, page 4. Note that in this problem
the height of the box is 2, thus

o [n] = 2 sir;gl% n) _ sin (%l n)

Part b)

Here, we can use the same method as the method used
in part a) by noting that

mn 1/ jmn _jmn
cos(—)=§<e4 +e 4)

4
<—>n6(w—%)+n6(w+%)

After the same steps in part a), we will discover that

x-[n] = cos (%) = x[n]:
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Alternatively, we can also note that cos (”Tn) can be
obtained by sampling the continuous time signal
cos (nrt) with sampling period 1. The corresponding

sampling angular frequency 2. After downsampling by
a factor of 2, we would have that a new sampling rate
ws = T.

. t\ .
Now, the bandwidth of cos (%) iswy = %, so we have
thatm = wg > 2wy = g Therefore, an ideal
reconstruction filter will be able to recover the original

. t . .
CT function cos (%) In particular, the samples in

mn
x[n] = cos (T) can be recovered.

Question 4

Part a)
By adding and subtracting s? + 2s + 2 in the numerator,
we get
2s+3
X(s) =

(s—1)(s?+25+2)
2 +25+2—(s®+25+2)+25+3
h (s—1D(s?2+2s+2)

_ 1 s?—1
Ts—1 (s—1D(s?+2s+2)
1 (s+D(s—-1)

T s—=1 (s—=1)(s2+2s5+2)
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1 s+1

=s—1_(s+1)2+1
o —etu(—t) — e tcos(t) u(t)

1 .
Note that we’ve chosen = © —etu(—t) instead of

< etu(t) to ensure that x(t) is absolutely integrable.

We could have also simplified X(s) using partial
fractions as follows:

2s+3 _ A 4 Bs+C
(s—1)(s2+25+2) s—1 s2+42s42

Alternatively, we could have also done partial fraction
with three different denominators, although there is a
bit more work involved:

_ 2s+3
XS = D2+ 25+ D)
_ 2s+3
T G=-DG+H1+NGE+1—))
A B c
_s—1+s+1+j+s+1—j
As+1+j))(s+1—-j)+B(s—1D(s+1—-))
_ +C(s—1D(s+1+))
B —D(Gs+1+)Hs+1-))
s=—-1—j

52(-1—-)+3=B(-1—j-1D(-1—-j+1-))
=1-2j=B(-2-)(-2j)
= 1-2j=—-2B(1-2))

B 1
>B=—-—
2

s=1
=>5=A01+1+)A+1—-))
=>5=4(4+1)
=2>A4A=1

s=—-1+4j

5214+ )+3=C(=1+j-D(=1+j+1+))
= 142j=C(=2+)2))
= 142j=-2C2j+1)

>C=—2
2
Thus
X(s) = 1 1( 1 4 1 )
V51 2\s+1+4) s+1—j



x(t) = —etu(—t) — %(e(‘l‘j)tu(t) + e<-1+f>tu(t))
1 . .
= —etu(-t) - 2 (e~te It + e tel u(t)

= —etu(-t) - e‘t%(e‘jt + e/t )u(e)

= —etu(—t) — e tcos(t) u(t)

Part b)

Note that the integral in the unilateral Laplace

transform will not catch the anti-causal term, —etu(—t),
SO

oo

X(s) = f [—etu(—t) — e~ cos(t) u(t)]e stdt

= fio—e‘t cos(t) u(t)e stdt

Next, since the causal term —e~¢ cos(t) u(t) = 0Vt <
0, we can extend the bound of the integral to —co.

X(s) = j°° —e~tcos(t) u(t)e stdt

This is the bilateral Laplace transform of
—e~tcos(t) u(t), so
s+1

X(s)=—(s+1)2+1

Remark: Although —e®=%u(—(t = 0)) = —1, this term
does not contribute to the integral as the area under a
single finite-valued point is 0. (A more rigorous
justification would involve Lebesgue integration)
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5. (20 points) Consider the RLC circuit below governed by the differential
equation:

d*y(t) dy(t)
LC—F + Rc—dt'" + y(t) = :L‘(t)
a) (6 points) Determine the transfer function of the LTI system implemented

with this circuit.

b) (7 points) How should R, L and C be related so that there is no oscillation
in the step response?

c) (7 points) How should R, L and C be related so that there is no resonance
peak in the magnitude of the frequency response, |H (jw)|?
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