University of California, Berkeley
 Department of Mechanical Engineering
 ME 104, Fall 2013

 Midterm Exam 1 Solutions

 Midterm Exam 1 Solutions}

1. (20 points) (a) For a particle undergoing a rectilinear motion, the position, velocity, and acceleration vectors are given by

$$
\begin{equation*}
\mathbf{r}=x \mathbf{i}, \quad \mathbf{v}=\dot{x} \mathbf{i}=v \mathbf{i}, \quad \mathbf{a}=\ddot{x} \mathbf{i}=a \mathbf{i} . \tag{1}
\end{equation*}
$$

Show that

$$
\begin{equation*}
a=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) . \tag{2}
\end{equation*}
$$

(Solution) (5 points)

$$
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{1}{2}(2 v) \frac{d v}{d x}=v \frac{d v}{d x}=\frac{d x}{d t} \frac{d v}{d x}=\frac{d v}{d t}=a
$$

(b) Consider a particle P of mass m travelling in a horizontal plane. Let its velocity vector be

$$
\begin{equation*}
\mathbf{v}=\dot{\mathbf{r}}=\dot{x} \mathbf{i}+\dot{y} \mathbf{j}=v_{x} \mathbf{i}+v_{y} \mathbf{j} . \tag{3}
\end{equation*}
$$

Suppose that v_{x}^{2} and v_{y}^{2} are specified by

$$
\begin{equation*}
v_{x}^{2}=C_{1}-\frac{1}{2} k x^{2} \geq 0, \quad v_{y}^{2}=C_{2}-\frac{1}{2} k y^{2} \geq 0 \tag{4}
\end{equation*}
$$

where k is a positive constant, and C_{1} and C_{2} are constants. Calculate a_{x} and a_{y}.
(Solution) (5 points)
Using (2),

$$
a_{x}=\frac{d}{d x}\left[\frac{1}{2}\left(C_{1}-\frac{1}{2} k x^{2}\right)\right]=-\frac{k x}{2}, \quad a_{y}=\frac{d}{d y}\left[\frac{1}{2}\left(C_{2}-\frac{1}{2} k y^{2}\right)\right]=-\frac{k y}{2}
$$

(c) Show that the force acting on P is centripetal.
(Solution) (5 points)
The force acting on P can be obtained using Newton's second law:

$$
\begin{aligned}
\mathbf{F} & =m \mathbf{a} \\
F_{x} \mathbf{i}+F_{y} \mathbf{j} & =m a_{x} \mathbf{i}+m a_{y} \mathbf{j}
\end{aligned}
$$

Taking the inner product with \mathbf{i} and \mathbf{j} respectively, and using the results from Part (b),

$$
F_{x}=m a_{x}=-\frac{m k x}{2}, \quad F_{y}=m a_{y}=-\frac{m k y}{2} .
$$

Then,

$$
\mathbf{F}=F_{x} \mathbf{i}+F_{y} \mathbf{j}=-\frac{m k}{2}(x \mathbf{i}+y \mathbf{j})=-\frac{m k}{2} \mathbf{e}_{r} .
$$

The direction of the force is $-\mathbf{e}_{r}$. The force acting on P is centripetal.
(d) Obtain the differential equations for the x and y coordinates of P, and provide a simple solution of either one of them.
(Solution) (5 points)
From the acceleration components a_{x} and a_{y}, we have

$$
\ddot{x}+\frac{k}{2} x=0, \quad \ddot{y}+\frac{k}{2} y=0 .
$$

Both equations represent simple harmonic motion. We can suppose that the solution has the form

$$
x=A \cos (\omega t)+B \sin (\omega t) .
$$

Differentiate once to get

$$
\dot{x}=-\omega A \sin (\omega t)+\omega B \cos (\omega t) .
$$

Differentiate again to get

$$
\ddot{x}=-\omega^{2}[A \cos (\omega t)+B \sin (\omega t)] .
$$

Substituting into the differential equation,

$$
\begin{aligned}
-\omega^{2}[A \cos (\omega t)+B \sin (\omega t)]+\frac{k}{2}[A \cos (\omega t)+B \sin (\omega t)] & =0 \\
{[A \cos (\omega t)+B \sin (\omega t)]\left(-\omega^{2}+\frac{k}{2}\right) } & =0
\end{aligned}
$$

So $\omega=\sqrt{k / 2}$. The solution becomes

$$
x=A \cos \left(\sqrt{\frac{k}{2}} t\right)+B \sin \left(\sqrt{\frac{k}{2}} t\right)
$$

We can choose the initial conditions to solve for A and B and complete the solution.
2. (30 points) Let $O A B C$ be a rigid plate which is rotating at constant angular velocity $\boldsymbol{\omega}=\omega \mathbf{k}$ around a vertical axis $O Z(\omega=\dot{\theta}=$ const. $)$. Introduce a corotational basis $\left\{\mathbf{e}_{r}, \mathbf{e}_{\theta}\right\}$ on the plate, as indicated in Fig. 1. Suppose that a rigid $\operatorname{rod} O A D$ is welded to the plate and that $M N$ is a rigid guide ($O M N$ is a right angle.). Let P be a pin of mass m that can slide on the rod and inside the guide.

Figure 1: Problem 2

Figure 1.
(a) Write down the relationship between the corotational basis vectors $\mathbf{e}_{r}, \mathbf{e}_{\theta}$ and the fixed basis vectors \mathbf{i}, \mathbf{j}.
(Solution) (4 points)

This can either be written in matrix form:

$$
\binom{\mathbf{e}_{r}}{\mathbf{e}_{\theta}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{\mathbf{i}}{\mathbf{j}},
$$

or

$$
\begin{aligned}
& \mathbf{e}_{r}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j} \\
& \mathbf{e}_{\theta}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j} .
\end{aligned}
$$

(b) Show that

$$
\begin{equation*}
\dot{\mathbf{e}}_{r}=\dot{\theta} \mathbf{e}_{\theta}=\boldsymbol{\omega} \times \mathbf{e}_{r}, \quad \dot{\mathbf{e}}_{\theta}=-\dot{\theta} \mathbf{e}_{r}=\boldsymbol{\omega} \times \mathbf{e}_{\theta} \tag{5}
\end{equation*}
$$

(Solution) (5 points)
Differentiating the cylindrical basis with respect to t,

$$
\begin{gathered}
\dot{\mathbf{e}}_{r}=\frac{d \mathbf{e}_{r}}{d t}=\dot{\theta}(-\sin \theta) \mathbf{i}+\dot{\theta} \cos \theta \mathbf{j}=\dot{\theta} \mathbf{e}_{\theta}, \\
\dot{\mathbf{e}}_{\theta}=\frac{d \mathbf{e}_{\theta}}{d t}=-\dot{\theta} \cos \theta \mathbf{i}+\dot{\theta}(-\sin \theta) \mathbf{j}=-\dot{\theta} \mathbf{e}_{r}
\end{gathered}
$$

Also,

$$
\begin{aligned}
\boldsymbol{\omega} \times \mathbf{e}_{r} & =\dot{\theta} \mathbf{k} \times \mathbf{e}_{r}=\dot{\theta} \mathbf{e}_{\theta} \\
\boldsymbol{\omega} \times \mathbf{e}_{\theta} & =\dot{\theta} \mathbf{k} \times \mathbf{e}_{\theta}=-\dot{\theta} \mathbf{e}_{r}
\end{aligned}
$$

(c) Express the velocity and acceleration of P on both bases, given that $\dot{\theta}=$ const. Hence deduce that

$$
\begin{equation*}
\dot{r}=\dot{y} \mathbf{j} \cdot \mathbf{e}_{r}, \quad r \dot{\theta}=\dot{y} \mathbf{j} \cdot \mathbf{e}_{\theta} \tag{6}
\end{equation*}
$$

(Solution) (5 points)
We note that in the motion of the pin, $v_{x}=\dot{x}=0$. If $\mathbf{r}=r(t) \mathbf{e}_{r}(t)=x \mathbf{i}+y \mathbf{j}$, and with $\dot{\theta}=$ const,

$$
\begin{aligned}
\mathbf{v}=\dot{\mathbf{r}} & =\dot{y} \mathbf{j}=v_{y} \mathbf{j} \\
& =\dot{r} \mathbf{e}_{r}+r \dot{\mathbf{e}}_{r} \\
& =\dot{r} \mathbf{e}_{r}+r \dot{\theta} \mathbf{e}_{\theta} \\
& =v_{r} \mathbf{e}_{r}+v_{\theta} \mathbf{e}_{\theta}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{a}=\dot{\mathbf{v}} & =\ddot{y} \mathbf{j}=a_{y} \mathbf{j} \\
& =\ddot{r} \mathbf{e}_{r}+\dot{r} \dot{\mathbf{e}}_{r}+\dot{r} \dot{\theta} \mathbf{e}_{\theta}+r \dot{\theta} \mathbf{e}_{\theta} \\
& =\ddot{r} \mathbf{e}_{r}+\dot{r} \dot{\theta} \mathbf{e}_{\theta}+\dot{r} \dot{\theta} \mathbf{e}_{\theta}-r \dot{\theta}^{2} \mathbf{e}_{r} \\
& =\left(\ddot{r}-r \dot{\theta}^{2}\right) \mathbf{e}_{r}+(2 \dot{r} \dot{\theta}) \mathbf{e}_{\theta} \\
& =a_{r} \mathbf{e}_{r}+a_{\theta} \mathbf{e}_{\theta} .
\end{aligned}
$$

We can take the inner product of the velocity with \mathbf{e}_{r} and \mathbf{e}_{θ} to get the equations in (6):

$$
\mathbf{v} \cdot \mathbf{e}_{r}=\dot{r}=\dot{y} \mathbf{j} \cdot \mathbf{e}_{r}, \quad \mathbf{v} \cdot \mathbf{e}_{\theta}=r \dot{\theta}=\dot{y} \mathbf{j} \cdot \mathbf{e}_{\theta}
$$

(d) Suppose that at $\theta=30^{\circ}$,

$$
\begin{equation*}
r=0.05 \mathrm{~m}, \quad \dot{r}=0.2 \mathrm{~m} / \mathrm{s}, \quad \ddot{r}=-0.025 \mathrm{~m} / \mathrm{s}^{2} . \tag{7}
\end{equation*}
$$

(i) Calculate $\dot{\theta}$ and \dot{y}, and check that $\dot{y}^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2}$.
(ii) Find \ddot{y}.
(iii) Calculate the magnitude of the total force \mathbf{F} acting on P if the mass of P is $m=0.5$ kg.
(Solution) (7 points)
The results from parts (a) and (c) gives us the component equations

$$
\dot{r}=\dot{y} \mathbf{j} \cdot \mathbf{e}_{r}=\dot{y} \sin \theta, \quad \text { and } \quad r \dot{\theta}=\dot{y} \mathbf{j} \cdot \mathbf{e}_{\theta}=\dot{y} \cos \theta .
$$

(i) Dividing the equations,

$$
\begin{aligned}
\frac{\dot{r}}{r \dot{\theta}}=\tan \theta \quad \longrightarrow \quad \dot{\theta} & =\frac{\dot{r}}{r \tan \theta} \\
& =\frac{0.2 \mathrm{~m} / \mathrm{s}}{0.05 \mathrm{~m} \times \tan 30^{\circ}} \\
& =\frac{1 / 5}{1 / 20 \times 1 / \sqrt{3}} \mathrm{rad} / \mathrm{s} \\
& =4 \sqrt{3} \mathrm{rad} / \mathrm{s} \\
& =6.93 \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\dot{r}=\dot{y} \sin \theta \quad \longrightarrow \quad \dot{y} & =\frac{\dot{r}}{\sin \theta} \\
& =\frac{0.2 \mathrm{~m} / \mathrm{s}}{\sin 30^{\circ}} \\
& =0.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Then

$$
\begin{aligned}
\dot{y}^{2} & =\dot{r}^{2}+r^{2} \dot{\theta}^{2} \\
(0.4 \mathrm{~m} / \mathrm{s})^{2} & =(0.2 \mathrm{~m} / \mathrm{s})^{2}+(0.05 \mathrm{~m})^{2} \times(4 \sqrt{3} \mathrm{rad} / \mathrm{s})^{2} \\
0.16 \mathrm{~m}^{2} / \mathrm{s}^{2} & =0.04 \mathrm{~m}^{2} / \mathrm{s}^{2}+0.12 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& =0.16 \mathrm{~m}^{2} / \mathrm{s}^{2} . \quad \sqrt{ }
\end{aligned}
$$

(ii) You are correct if you used the following methods to find \ddot{y}.

$$
\begin{equation*}
\ddot{y} \mathbf{j} \cdot \mathbf{j}=\mathbf{a} \cdot \mathbf{j}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \mathbf{e}_{r} \cdot \mathbf{j}+(2 \dot{r} \dot{\theta}) \mathbf{e}_{\theta} \cdot \mathbf{j} \tag{1}
\end{equation*}
$$

or (2) $\ddot{y} \mathbf{j} \cdot \mathbf{e}_{r}=\mathbf{a} \cdot \mathbf{e}_{r}=\ddot{r}-r \dot{\theta}^{2}$
or \quad (3) $\quad \ddot{y} \mathbf{j} \cdot \mathbf{e}_{\theta}=\mathbf{a} \cdot \mathbf{e}_{\theta}=2 \dot{r} \dot{\theta}$
It is given in the problem that $\dot{\theta}=$ const. With the introduction of a value for \ddot{r}, the problem actually becomes over-determined. This means a value is specified which can actually be calculated, and if we don't choose to specify it correctly, we have a contradiction. As a result, \ddot{y} does not have a unique solution. For the sake of completeness, the actual values of \ddot{r} and \ddot{y} are solved below.

$$
\begin{array}{rll}
\ddot{y} \mathbf{j} \cdot \mathbf{e}_{\theta}=2 \dot{r} \dot{\theta} & \rightarrow & \ddot{y}=\frac{2 \dot{r} \dot{\theta}}{\cos \theta}=\frac{2 \times 0.2 \times 4 \sqrt{3}}{\cos 30}=3.2 \mathrm{~m} / \mathrm{s}^{2} \\
\ddot{y} \mathbf{j} \cdot \mathbf{e}_{r}=\ddot{r}-r \dot{\theta}^{2} & \rightarrow & \ddot{r}=\ddot{y} \sin \theta+r \dot{\theta}^{2}=3.2 \sin 30+0.05 \times(4 \sqrt{3})^{2}=4 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

(iii) The magnitude of the force is

$$
\begin{aligned}
\|\mathbf{F}\|=\|m \mathbf{a}\|=m\|\mathbf{a}\|=m\|\ddot{y} \mathbf{j}\| & =m \ddot{y} \\
& =0.5 \mathrm{~kg} \times 3.2 \mathrm{~m} / \mathrm{s}^{2} \\
& =1.6 \mathrm{~N} .
\end{aligned}
$$

(e) Let η represent the distance along the diagonal $O B$ of the plate. Calculate the velocity distribution $\mathbf{v}(\eta)$ along $O B$ and sketch it.
(Solution) (5 points)
We can set up a new basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ by rotating the basis $\left\{\mathbf{e}_{r}, \mathbf{e}_{\theta}\right\}$ at an angle $\phi=\tan ^{-1}(1 / 2)=$ 26.565° such that \mathbf{e}_{1} is along the diagonal of the plate and \mathbf{e}_{2} is perpendicular to it. See Figure 2. The unit vector \mathbf{e}_{1} along the diagonal of the rigid plate is

$$
\mathbf{e}_{1}=\cos \phi \mathbf{e}_{r}+\sin \phi \mathbf{e}_{\theta}=\frac{1}{\sqrt{5}}\left(2 \mathbf{e}_{r}+\mathbf{e}_{\theta}\right)
$$

Figure 2: Rotating plate

The unit vector perpendicular to the diagonal is

$$
\mathbf{e}_{2}=-\sin \phi \mathbf{e}_{r}+\cos \phi \mathbf{e}_{\theta}=\frac{1}{\sqrt{5}}\left(-\mathbf{e}_{r}+2 \mathbf{e}_{\theta}\right)
$$

Also, $\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{k}$. Their time derivatives are

$$
\dot{\mathbf{e}}_{1}=\boldsymbol{\omega} \times \mathbf{e}_{1}=\dot{\theta} \mathbf{e}_{2}, \quad \dot{\mathbf{e}}_{2}=\boldsymbol{\omega} \times \mathbf{e}_{2}=-\dot{\theta} \mathbf{e}_{1}
$$

Along $O B$,

$$
\begin{aligned}
\mathbf{r}(\eta)=\eta \mathbf{e}_{1} & =\eta\left(\cos \phi \mathbf{e}_{r}+\sin \phi \mathbf{e}_{\theta}\right) \\
& =\frac{\eta}{\sqrt{5}}\left(2 \mathbf{e}_{r}+\mathbf{e}_{\theta}\right)
\end{aligned}
$$

The velocity is

$$
\begin{aligned}
\mathbf{v}=\dot{\mathbf{r}} & =\eta \dot{\mathbf{e}}_{1}=\eta \boldsymbol{\omega} \times \mathbf{e}_{1} \\
& =\boldsymbol{\omega} \times \mathbf{r}=\dot{\theta} \mathbf{k} \times \eta \mathbf{e}_{1}=\dot{\theta} \eta \mathbf{k} \times \mathbf{e}_{1} \\
& =\eta \dot{\theta} \mathbf{e}_{2} \\
& =\eta \dot{\theta}\left(-\sin \phi \mathbf{e}_{r}+\cos \phi \mathbf{e}_{\theta}\right) .
\end{aligned}
$$

A sketch of the velocity is shown in Figure 3.
(f) Also calculate the acceleration along the diagonal $O B$ and indicate its variation on a sketch ($\dot{\theta}=$ const.).
(Solution) (4 points)
The acceleration is

$$
\begin{aligned}
\mathbf{a}=\dot{\mathbf{v}} & =\eta \dot{\theta} \dot{\mathbf{e}}_{2}=\eta \dot{\theta} \boldsymbol{\omega} \times \mathbf{e}_{2} \\
& =\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \mathbf{r})=\dot{\theta} \mathbf{k} \times\left(\eta \dot{\theta} \mathbf{k} \times \mathbf{e}_{1}\right) \\
& =-\eta \dot{\theta}^{2} \mathbf{e}_{1} \\
& =-\dot{\theta}^{2} \mathbf{r}(\eta),
\end{aligned}
$$

which is centripetal. A sketch is shown in Figure 3.

Figure 3: Velocity and acceleration

